幅面体的BCFW平铺和簇邻接

IF 9.1 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Chaim Even-Zohar, Tsviqa Lakrec, Matteo Parisi, Melissa Sherman-Bennett, Ran Tessler, Lauren Williams
{"title":"幅面体的BCFW平铺和簇邻接","authors":"Chaim Even-Zohar, Tsviqa Lakrec, Matteo Parisi, Melissa Sherman-Bennett, Ran Tessler, Lauren Williams","doi":"10.1073/pnas.2408572122","DOIUrl":null,"url":null,"abstract":"In 2005, Britto, Cachazo, Feng, and Witten gave a recurrence (now known as the BCFW recurrence) for computing scattering amplitudes in <jats:italic>N</jats:italic> = 4 super Yang–Mills theory. Arkani-Hamed and Trnka subsequently introduced the amplituhedron to give a geometric interpretation of the BCFW recurrence. Arkani-Hamed and Trnka conjectured that each way of iterating the BCFW recurrence gives a “triangulation” or “tiling” of the m=4 amplituhedron. In this article, we prove the BCFW tiling conjecture of Arkani-Hamed and Trnka. We also prove the cluster adjacency conjecture for BCFW tiles of the amplituhedron, which says that facets of tiles are cut out by collections of compatible cluster variables for the Grassmannian Gr4,n. Moreover we show that each BCFW tile is the subset of the Grassmannian where certain cluster variables have particular signs.","PeriodicalId":20548,"journal":{"name":"Proceedings of the National Academy of Sciences of the United States of America","volume":"85 1","pages":""},"PeriodicalIF":9.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BCFW tilings and cluster adjacency for the amplituhedron\",\"authors\":\"Chaim Even-Zohar, Tsviqa Lakrec, Matteo Parisi, Melissa Sherman-Bennett, Ran Tessler, Lauren Williams\",\"doi\":\"10.1073/pnas.2408572122\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In 2005, Britto, Cachazo, Feng, and Witten gave a recurrence (now known as the BCFW recurrence) for computing scattering amplitudes in <jats:italic>N</jats:italic> = 4 super Yang–Mills theory. Arkani-Hamed and Trnka subsequently introduced the amplituhedron to give a geometric interpretation of the BCFW recurrence. Arkani-Hamed and Trnka conjectured that each way of iterating the BCFW recurrence gives a “triangulation” or “tiling” of the m=4 amplituhedron. In this article, we prove the BCFW tiling conjecture of Arkani-Hamed and Trnka. We also prove the cluster adjacency conjecture for BCFW tiles of the amplituhedron, which says that facets of tiles are cut out by collections of compatible cluster variables for the Grassmannian Gr4,n. Moreover we show that each BCFW tile is the subset of the Grassmannian where certain cluster variables have particular signs.\",\"PeriodicalId\":20548,\"journal\":{\"name\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"volume\":\"85 1\",\"pages\":\"\"},\"PeriodicalIF\":9.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the National Academy of Sciences of the United States of America\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1073/pnas.2408572122\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the National Academy of Sciences of the United States of America","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1073/pnas.2408572122","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

2005年,Britto, Cachazo, Feng和Witten给出了N = 4超级Yang-Mills理论中计算散射振幅的递归式(现在称为BCFW递归式)。Arkani-Hamed和Trnka随后引入幅面体来给出BCFW递归的几何解释。Arkani-Hamed和Trnka推测,每一种迭代BCFW递归的方法都会给出m=4振幅面体的“三角化”或“平铺”。本文证明了Arkani-Hamed和Trnka的BCFW平铺猜想。我们还证明了幅面体的BCFW瓷砖的簇邻接猜想,该猜想表明瓷砖的切面是由格拉斯曼Gr4,n的兼容簇变量集合切割出来的。此外,我们还表明,每个BCFW图是格拉斯曼图的子集,其中某些聚类变量具有特定的符号。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BCFW tilings and cluster adjacency for the amplituhedron
In 2005, Britto, Cachazo, Feng, and Witten gave a recurrence (now known as the BCFW recurrence) for computing scattering amplitudes in N = 4 super Yang–Mills theory. Arkani-Hamed and Trnka subsequently introduced the amplituhedron to give a geometric interpretation of the BCFW recurrence. Arkani-Hamed and Trnka conjectured that each way of iterating the BCFW recurrence gives a “triangulation” or “tiling” of the m=4 amplituhedron. In this article, we prove the BCFW tiling conjecture of Arkani-Hamed and Trnka. We also prove the cluster adjacency conjecture for BCFW tiles of the amplituhedron, which says that facets of tiles are cut out by collections of compatible cluster variables for the Grassmannian Gr4,n. Moreover we show that each BCFW tile is the subset of the Grassmannian where certain cluster variables have particular signs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
19.00
自引率
0.90%
发文量
3575
审稿时长
2.5 months
期刊介绍: The Proceedings of the National Academy of Sciences (PNAS), a peer-reviewed journal of the National Academy of Sciences (NAS), serves as an authoritative source for high-impact, original research across the biological, physical, and social sciences. With a global scope, the journal welcomes submissions from researchers worldwide, making it an inclusive platform for advancing scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信