(La, Mn)共掺杂对BaTiO3材料光子性能影响的理论研究

IF 8.2 2区 材料科学 Q1 MATERIALS SCIENCE, MULTIDISCIPLINARY
Zheng Kang, Mei Wu, Jiahao Li, Jieming Zhang, Haiyi Tian, Yunkai Wu, Xu Wang
{"title":"(La, Mn)共掺杂对BaTiO3材料光子性能影响的理论研究","authors":"Zheng Kang, Mei Wu, Jiahao Li, Jieming Zhang, Haiyi Tian, Yunkai Wu, Xu Wang","doi":"10.1021/acsami.4c20090","DOIUrl":null,"url":null,"abstract":"This study aimed to investigate the structure, electronic, ferroelectric, and optical properties of primitive BaTiO<sub>3</sub> (BTO) and (Ba<sub>0.875</sub>La<sub>0.125</sub>)(Ti<sub>0.875</sub>Mn<sub>0.125</sub>)O<sub>3</sub> (BLTM) using density functional theory and the generalized gradient approximation plane wave pseudopotential technique. Co-doping with (La, Mn) reduces the tetragonality of BTO, resulting in a pseudocubic configuration of its unit cell. The incorporation of dopant elements introduces impurity levels within the material’s band structure, thereby reducing the bandgap and enhancing its light absorption capability. Simultaneously, BLTM exhibits low effective carrier mass and high electrical conductivity. Analysis of its optical properties reveals a high absorption coefficient and pronounced photorefractivity, with a red shift in the absorption peak, demonstrating high absorption rates in both the infrared and visible light regions. The results show that the differences in the ionic radius and electronegativity of the dopant elements lead to changes in the crystal structure and chemical bonding properties of the materials, which in turn affect the electron cloud density of the materials and ultimately effectively improve the material properties.","PeriodicalId":5,"journal":{"name":"ACS Applied Materials & Interfaces","volume":"70 1","pages":""},"PeriodicalIF":8.2000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Study of (La, Mn) Codoping on the Modification of Photonic Performance in BaTiO3 Materials\",\"authors\":\"Zheng Kang, Mei Wu, Jiahao Li, Jieming Zhang, Haiyi Tian, Yunkai Wu, Xu Wang\",\"doi\":\"10.1021/acsami.4c20090\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study aimed to investigate the structure, electronic, ferroelectric, and optical properties of primitive BaTiO<sub>3</sub> (BTO) and (Ba<sub>0.875</sub>La<sub>0.125</sub>)(Ti<sub>0.875</sub>Mn<sub>0.125</sub>)O<sub>3</sub> (BLTM) using density functional theory and the generalized gradient approximation plane wave pseudopotential technique. Co-doping with (La, Mn) reduces the tetragonality of BTO, resulting in a pseudocubic configuration of its unit cell. The incorporation of dopant elements introduces impurity levels within the material’s band structure, thereby reducing the bandgap and enhancing its light absorption capability. Simultaneously, BLTM exhibits low effective carrier mass and high electrical conductivity. Analysis of its optical properties reveals a high absorption coefficient and pronounced photorefractivity, with a red shift in the absorption peak, demonstrating high absorption rates in both the infrared and visible light regions. The results show that the differences in the ionic radius and electronegativity of the dopant elements lead to changes in the crystal structure and chemical bonding properties of the materials, which in turn affect the electron cloud density of the materials and ultimately effectively improve the material properties.\",\"PeriodicalId\":5,\"journal\":{\"name\":\"ACS Applied Materials & Interfaces\",\"volume\":\"70 1\",\"pages\":\"\"},\"PeriodicalIF\":8.2000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Materials & Interfaces\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1021/acsami.4c20090\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Materials & Interfaces","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1021/acsami.4c20090","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用密度泛函理论和广义梯度近似平面波伪势技术研究了原始BaTiO3 (BTO)和(Ba0.875La0.125)(Ti0.875Mn0.125)O3 (BLTM)的结构、电子、铁电和光学性质。与(La, Mn)共掺杂降低了BTO的四方性,导致其单元胞的赝赝构型。掺杂元素的掺入在材料的能带结构中引入了杂质水平,从而减小了带隙并增强了其光吸收能力。同时,BLTM具有低有效载流子质量和高导电性。对其光学性质的分析表明,其具有较高的吸收系数和明显的光折射率,吸收峰有红移,表明其在红外和可见光区域的吸收率都很高。结果表明,掺杂元素离子半径和电负性的差异导致材料的晶体结构和化学键性能发生变化,进而影响材料的电子云密度,最终有效改善材料性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical Study of (La, Mn) Codoping on the Modification of Photonic Performance in BaTiO3 Materials

Theoretical Study of (La, Mn) Codoping on the Modification of Photonic Performance in BaTiO3 Materials
This study aimed to investigate the structure, electronic, ferroelectric, and optical properties of primitive BaTiO3 (BTO) and (Ba0.875La0.125)(Ti0.875Mn0.125)O3 (BLTM) using density functional theory and the generalized gradient approximation plane wave pseudopotential technique. Co-doping with (La, Mn) reduces the tetragonality of BTO, resulting in a pseudocubic configuration of its unit cell. The incorporation of dopant elements introduces impurity levels within the material’s band structure, thereby reducing the bandgap and enhancing its light absorption capability. Simultaneously, BLTM exhibits low effective carrier mass and high electrical conductivity. Analysis of its optical properties reveals a high absorption coefficient and pronounced photorefractivity, with a red shift in the absorption peak, demonstrating high absorption rates in both the infrared and visible light regions. The results show that the differences in the ionic radius and electronegativity of the dopant elements lead to changes in the crystal structure and chemical bonding properties of the materials, which in turn affect the electron cloud density of the materials and ultimately effectively improve the material properties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Applied Materials & Interfaces
ACS Applied Materials & Interfaces 工程技术-材料科学:综合
CiteScore
16.00
自引率
6.30%
发文量
4978
审稿时长
1.8 months
期刊介绍: ACS Applied Materials & Interfaces is a leading interdisciplinary journal that brings together chemists, engineers, physicists, and biologists to explore the development and utilization of newly-discovered materials and interfacial processes for specific applications. Our journal has experienced remarkable growth since its establishment in 2009, both in terms of the number of articles published and the impact of the research showcased. We are proud to foster a truly global community, with the majority of published articles originating from outside the United States, reflecting the rapid growth of applied research worldwide.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信