Benedict Schwarz, Christopher Hardt, Katharina Friedrich, Monika Prpic, Anja Osterloh, Frank L Heppner, Klemens Ruprecht, Kai Kappert, Amir Jahic
{"title":"Sysmex XN-Based Evaluation of the Diagnostic Performance of High-Fluorescent Cells From CSF as a Supportive Diagnostic Criterion in Neurological Diseases.","authors":"Benedict Schwarz, Christopher Hardt, Katharina Friedrich, Monika Prpic, Anja Osterloh, Frank L Heppner, Klemens Ruprecht, Kai Kappert, Amir Jahic","doi":"10.1111/ijlh.14466","DOIUrl":null,"url":null,"abstract":"<p><strong>Introduction: </strong>Automatic cytological analysis of cerebrospinal fluid (CSF) by Sysmex XN-Series represents a convenient laboratory platform for quantitative examination of nucleated CSF cells (monomorphonuclear (MN), polymorphonuclear (PMN), high-fluorescent (HF)). HF cells (HFC), a research laboratory parameter so far, seem to be associated with certain clinical patterns. Hence, we aimed to determine the diagnostic HFC value for different clinical categories in neurological settings.</p><p><strong>Methods: </strong>Morphological classification of automatically detected HFC was carried out using manual light microscopy. Automatic method precision for cell differentiation was evaluated in comparison. In 284 cases, multiple correlation strategies and mathematical disease modellings enabled an explorative analysis of HFC suitability for case stratification into the categories Hemorrhage, Inflammation, Neoplasia, other, and unknown.</p><p><strong>Results: </strong>Manual microscopic reevaluation revealed plasma cells, macrophages, and malignant cells being HFC correlates in 80% of automatically detected HFC. Method correlation for automatic and manual CSF cell differentiation approaches was 95%, yielding a negative bias of 4.3% for MN and positive bias of 0.4% and 3.9% for PMN and HF, respectively. When HFC were used as a \"stand-alone\" predicting tool, diagnostic accuracy, specificity, and sensitivity depended on the clinical condition, ranging from > 0.5 up to > 0.7 for Hemorrhage, Inflammation, and Neoplasia. However, multiparametric correlation analyses combining laboratory CSF diagnostics and mathematical methods defined HFC as a relevant laboratory parameter for adequate clinical case stratification. With an expected random distribution of 25% for four clinical categories, almost 70% of cases were correctly classified when the HFC-based mathematical algorithm was applied.</p><p><strong>Conclusion: </strong>HFC has significant diagnostic and/or predictive value for neurological diseases.</p>","PeriodicalId":94050,"journal":{"name":"International journal of laboratory hematology","volume":" ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of laboratory hematology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1111/ijlh.14466","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

简介Sysmex XN 系列脑脊液(CSF)自动细胞学分析仪是定量检测脑脊液有核细胞(单核细胞(MN)、多核细胞(PMN)、高荧光细胞(HF))的便捷实验室平台。高荧光细胞(HFC)是迄今为止的实验室研究参数,似乎与某些临床模式有关。因此,我们旨在确定高荧光细胞对神经系统不同临床类别的诊断价值:方法:使用手动光学显微镜对自动检测到的 HFC 进行形态学分类。比较评估了自动方法在细胞分化方面的精确性。在 284 个病例中,通过多种相关策略和数学疾病模型,对 HFC 是否适合将病例分为出血、炎症、肿瘤、其他和未知类别进行了探索性分析:结果:人工显微镜重新评估发现,在 80% 自动检测到的 HFC 中,浆细胞、巨噬细胞和恶性细胞与 HFC 相关。自动和人工 CSF 细胞分化方法的相关性为 95%,MN 的负偏差为 4.3%,PMN 和 HF 的正偏差分别为 0.4% 和 3.9%。当 HFC 被用作 "独立的 "预测工具时,诊断准确性、特异性和灵敏度取决于临床状况,出血、炎症和肿瘤的诊断准确性、特异性和灵敏度从大于 0.5 到大于 0.7 不等。然而,结合实验室 CSF 诊断和数学方法进行的多参数相关性分析将 HFC 定义为对临床病例进行适当分层的相关实验室参数。四个临床类别的预期随机分布为 25%,应用基于 HFC 的数学算法后,近 70% 的病例被正确分类:结论:HFC 对神经系统疾病具有重要的诊断和/或预测价值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Sysmex XN-Based Evaluation of the Diagnostic Performance of High-Fluorescent Cells From CSF as a Supportive Diagnostic Criterion in Neurological Diseases.

Introduction: Automatic cytological analysis of cerebrospinal fluid (CSF) by Sysmex XN-Series represents a convenient laboratory platform for quantitative examination of nucleated CSF cells (monomorphonuclear (MN), polymorphonuclear (PMN), high-fluorescent (HF)). HF cells (HFC), a research laboratory parameter so far, seem to be associated with certain clinical patterns. Hence, we aimed to determine the diagnostic HFC value for different clinical categories in neurological settings.

Methods: Morphological classification of automatically detected HFC was carried out using manual light microscopy. Automatic method precision for cell differentiation was evaluated in comparison. In 284 cases, multiple correlation strategies and mathematical disease modellings enabled an explorative analysis of HFC suitability for case stratification into the categories Hemorrhage, Inflammation, Neoplasia, other, and unknown.

Results: Manual microscopic reevaluation revealed plasma cells, macrophages, and malignant cells being HFC correlates in 80% of automatically detected HFC. Method correlation for automatic and manual CSF cell differentiation approaches was 95%, yielding a negative bias of 4.3% for MN and positive bias of 0.4% and 3.9% for PMN and HF, respectively. When HFC were used as a "stand-alone" predicting tool, diagnostic accuracy, specificity, and sensitivity depended on the clinical condition, ranging from > 0.5 up to > 0.7 for Hemorrhage, Inflammation, and Neoplasia. However, multiparametric correlation analyses combining laboratory CSF diagnostics and mathematical methods defined HFC as a relevant laboratory parameter for adequate clinical case stratification. With an expected random distribution of 25% for four clinical categories, almost 70% of cases were correctly classified when the HFC-based mathematical algorithm was applied.

Conclusion: HFC has significant diagnostic and/or predictive value for neurological diseases.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信