三维细胞形状轮廓的几何深度学习和多实例学习。

Matt De Vries, Lucas G Dent, Nathan Curry, Leo Rowe-Brown, Vicky Bousgouni, Olga Fourkioti, Reed Naidoo, Hugh Sparks, Adam Tyson, Chris Dunsby, Chris Bakal
{"title":"三维细胞形状轮廓的几何深度学习和多实例学习。","authors":"Matt De Vries, Lucas G Dent, Nathan Curry, Leo Rowe-Brown, Vicky Bousgouni, Olga Fourkioti, Reed Naidoo, Hugh Sparks, Adam Tyson, Chris Dunsby, Chris Bakal","doi":"10.1016/j.cels.2025.101229","DOIUrl":null,"url":null,"abstract":"<p><p>The three-dimensional (3D) morphology of cells emerges from complex cellular and environmental interactions, serving as an indicator of cell state and function. In this study, we used deep learning to discover morphology representations and understand cell states. This study introduced MorphoMIL, a computational pipeline combining geometric deep learning and attention-based multiple-instance learning to profile 3D cell and nuclear shapes. We used 3D point-cloud input and captured morphological signatures at single-cell and population levels, accounting for phenotypic heterogeneity. We applied these methods to over 95,000 melanoma cells treated with clinically relevant and cytoskeleton-modulating chemical and genetic perturbations. The pipeline accurately predicted drug perturbations and cell states. Our framework revealed subtle morphological changes associated with perturbations, key shapes correlating with signaling activity, and interpretable insights into cell-state heterogeneity. MorphoMIL demonstrated superior performance and generalized across diverse datasets, paving the way for scalable, high-throughput morphological profiling in drug discovery. A record of this paper's transparent peer review process is included in the supplemental information.</p>","PeriodicalId":93929,"journal":{"name":"Cell systems","volume":"16 3","pages":"101229"},"PeriodicalIF":0.0000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Geometric deep learning and multiple-instance learning for 3D cell-shape profiling.\",\"authors\":\"Matt De Vries, Lucas G Dent, Nathan Curry, Leo Rowe-Brown, Vicky Bousgouni, Olga Fourkioti, Reed Naidoo, Hugh Sparks, Adam Tyson, Chris Dunsby, Chris Bakal\",\"doi\":\"10.1016/j.cels.2025.101229\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The three-dimensional (3D) morphology of cells emerges from complex cellular and environmental interactions, serving as an indicator of cell state and function. In this study, we used deep learning to discover morphology representations and understand cell states. This study introduced MorphoMIL, a computational pipeline combining geometric deep learning and attention-based multiple-instance learning to profile 3D cell and nuclear shapes. We used 3D point-cloud input and captured morphological signatures at single-cell and population levels, accounting for phenotypic heterogeneity. We applied these methods to over 95,000 melanoma cells treated with clinically relevant and cytoskeleton-modulating chemical and genetic perturbations. The pipeline accurately predicted drug perturbations and cell states. Our framework revealed subtle morphological changes associated with perturbations, key shapes correlating with signaling activity, and interpretable insights into cell-state heterogeneity. MorphoMIL demonstrated superior performance and generalized across diverse datasets, paving the way for scalable, high-throughput morphological profiling in drug discovery. A record of this paper's transparent peer review process is included in the supplemental information.</p>\",\"PeriodicalId\":93929,\"journal\":{\"name\":\"Cell systems\",\"volume\":\"16 3\",\"pages\":\"101229\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cell systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1016/j.cels.2025.101229\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cell systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1016/j.cels.2025.101229","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

细胞的三维(3D)形态产生于复杂的细胞与环境的相互作用,作为细胞状态和功能的指标。在这项研究中,我们使用深度学习来发现形态学表征并理解细胞状态。该研究引入了MorphoMIL,这是一种结合几何深度学习和基于注意力的多实例学习的计算管道,用于绘制3D细胞和核的形状。我们使用3D点云输入并捕获单细胞和群体水平的形态特征,以解释表型异质性。我们将这些方法应用于超过95,000个黑色素瘤细胞,并使用临床相关和细胞骨架调节的化学和遗传扰动进行治疗。该管道准确地预测了药物扰动和细胞状态。我们的框架揭示了与扰动相关的细微形态变化,与信号活动相关的关键形状,以及对细胞状态异质性的可解释见解。MorphoMIL表现出卓越的性能,并在不同的数据集上得到推广,为药物发现中可扩展的、高通量的形态分析铺平了道路。本文的透明同行评议过程记录包含在补充信息中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Geometric deep learning and multiple-instance learning for 3D cell-shape profiling.

The three-dimensional (3D) morphology of cells emerges from complex cellular and environmental interactions, serving as an indicator of cell state and function. In this study, we used deep learning to discover morphology representations and understand cell states. This study introduced MorphoMIL, a computational pipeline combining geometric deep learning and attention-based multiple-instance learning to profile 3D cell and nuclear shapes. We used 3D point-cloud input and captured morphological signatures at single-cell and population levels, accounting for phenotypic heterogeneity. We applied these methods to over 95,000 melanoma cells treated with clinically relevant and cytoskeleton-modulating chemical and genetic perturbations. The pipeline accurately predicted drug perturbations and cell states. Our framework revealed subtle morphological changes associated with perturbations, key shapes correlating with signaling activity, and interpretable insights into cell-state heterogeneity. MorphoMIL demonstrated superior performance and generalized across diverse datasets, paving the way for scalable, high-throughput morphological profiling in drug discovery. A record of this paper's transparent peer review process is included in the supplemental information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信