混合有序和连续响应的联合分位数回归模型及其在肥胖风险数据中的应用。

IF 1.6 3区 医学 Q3 HEALTH CARE SCIENCES & SERVICES
Hong-Xia Zhang, Yu-Zhu Tian, Yue Wang, Mao-Zai Tian
{"title":"混合有序和连续响应的联合分位数回归模型及其在肥胖风险数据中的应用。","authors":"Hong-Xia Zhang, Yu-Zhu Tian, Yue Wang, Mao-Zai Tian","doi":"10.1177/09622802251316974","DOIUrl":null,"url":null,"abstract":"<p><p>In clinical medical health research, individual measurements sometimes appear as a mixture of ordinal and continuous responses. There are some statistical correlations between response indicators. Regarding the joint modeling of mixed responses, the effect of a set of explanatory variables on the conditional mean of mixed responses is usually studied based on a mean regression model. However, mean regression results tend to underperform for data with non-normal errors and outliers. Quantile regression (QR) offers not only robust estimates but also the ability to analyze the impact of explanatory variables on various quantiles of the response variable. In this paper, we propose a joint QR modeling approach for mixed ordinal and continuous responses and apply it to the analysis of a set of obesity risk data. Firstly, we construct the joint QR model for mixed ordinal and continuous responses based on multivariate asymmetric Laplace distribution and a latent variable model. Secondly, we perform parameter estimation of the model using a Markov chain Monte Carlo algorithm. Finally, Monte Carlo simulation and a set of obesity risk data analysis are used to verify the validity of the proposed model and method.</p>","PeriodicalId":22038,"journal":{"name":"Statistical Methods in Medical Research","volume":" ","pages":"9622802251316974"},"PeriodicalIF":1.6000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The joint quantile regression modeling of mixed ordinal and continuous responses with its application to an obesity risk data.\",\"authors\":\"Hong-Xia Zhang, Yu-Zhu Tian, Yue Wang, Mao-Zai Tian\",\"doi\":\"10.1177/09622802251316974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>In clinical medical health research, individual measurements sometimes appear as a mixture of ordinal and continuous responses. There are some statistical correlations between response indicators. Regarding the joint modeling of mixed responses, the effect of a set of explanatory variables on the conditional mean of mixed responses is usually studied based on a mean regression model. However, mean regression results tend to underperform for data with non-normal errors and outliers. Quantile regression (QR) offers not only robust estimates but also the ability to analyze the impact of explanatory variables on various quantiles of the response variable. In this paper, we propose a joint QR modeling approach for mixed ordinal and continuous responses and apply it to the analysis of a set of obesity risk data. Firstly, we construct the joint QR model for mixed ordinal and continuous responses based on multivariate asymmetric Laplace distribution and a latent variable model. Secondly, we perform parameter estimation of the model using a Markov chain Monte Carlo algorithm. Finally, Monte Carlo simulation and a set of obesity risk data analysis are used to verify the validity of the proposed model and method.</p>\",\"PeriodicalId\":22038,\"journal\":{\"name\":\"Statistical Methods in Medical Research\",\"volume\":\" \",\"pages\":\"9622802251316974\"},\"PeriodicalIF\":1.6000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Statistical Methods in Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1177/09622802251316974\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"HEALTH CARE SCIENCES & SERVICES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Statistical Methods in Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1177/09622802251316974","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEALTH CARE SCIENCES & SERVICES","Score":null,"Total":0}
引用次数: 0

摘要

在临床医学健康研究中,个体测量有时表现为顺序反应和连续反应的混合。各响应指标之间存在一定的统计相关性。对于混合响应的联合建模,通常基于均值回归模型来研究一组解释变量对混合响应条件均值的影响。然而,对于具有非正态误差和异常值的数据,平均回归结果往往表现不佳。分位数回归(QR)不仅提供稳健估计,而且能够分析解释变量对响应变量的各个分位数的影响。本文提出了一种混合有序和连续响应的联合QR建模方法,并将其应用于一组肥胖风险数据的分析。首先,基于多元非对称拉普拉斯分布和隐变量模型,构造了混合有序和连续响应的联合QR模型;其次,采用马尔可夫链蒙特卡罗算法对模型进行参数估计。最后,通过蒙特卡罗仿真和一组肥胖风险数据分析,验证了所提模型和方法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The joint quantile regression modeling of mixed ordinal and continuous responses with its application to an obesity risk data.

In clinical medical health research, individual measurements sometimes appear as a mixture of ordinal and continuous responses. There are some statistical correlations between response indicators. Regarding the joint modeling of mixed responses, the effect of a set of explanatory variables on the conditional mean of mixed responses is usually studied based on a mean regression model. However, mean regression results tend to underperform for data with non-normal errors and outliers. Quantile regression (QR) offers not only robust estimates but also the ability to analyze the impact of explanatory variables on various quantiles of the response variable. In this paper, we propose a joint QR modeling approach for mixed ordinal and continuous responses and apply it to the analysis of a set of obesity risk data. Firstly, we construct the joint QR model for mixed ordinal and continuous responses based on multivariate asymmetric Laplace distribution and a latent variable model. Secondly, we perform parameter estimation of the model using a Markov chain Monte Carlo algorithm. Finally, Monte Carlo simulation and a set of obesity risk data analysis are used to verify the validity of the proposed model and method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Statistical Methods in Medical Research
Statistical Methods in Medical Research 医学-数学与计算生物学
CiteScore
4.10
自引率
4.30%
发文量
127
审稿时长
>12 weeks
期刊介绍: Statistical Methods in Medical Research is a peer reviewed scholarly journal and is the leading vehicle for articles in all the main areas of medical statistics and an essential reference for all medical statisticians. This unique journal is devoted solely to statistics and medicine and aims to keep professionals abreast of the many powerful statistical techniques now available to the medical profession. This journal is a member of the Committee on Publication Ethics (COPE)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信