{"title":"测量曼谷污水处理厂中的 SARS-CoV-2 RNA,并估算 2023 年泰国全面开放后的感染人群。","authors":"Thanchira Saita, Bussarakam Thitanuwat, Nattamon Niyomdecha, Jarunee Prasertsopon, Hatairat Lerdsamran, Pilaipan Puthavathana, Pirom Noisumdaeng","doi":"10.1038/s41598-025-94938-7","DOIUrl":null,"url":null,"abstract":"<p><p>Wastewater-based epidemiology (WBE) has been employed for monitoring the presence of SARS-CoV-2 infected population. Herein, the study aims to apply the WBE for surveillance and monitoring SARS-CoV-2 in Bangkok, where the highest official covid-19 cases reported in Thailand, during the fully opening for international tourists in early 2023. A total of 200 wastewater samples (100 influent and 100 effluent samples) were collected from 10 wastewater treatment plants (WWTPs) during January-May 2023. SARS-CoV-2 RNA was detected by real time qRT-PCR with accounting for 51% (102/200). Of these, 88% (88/100) and 14% (14/100) were detected in influent and effluent samples, respectively. The SARS-CoV-2 RNA concentration was detected in ranged of 4.76 × 10<sup>2</sup>-1.48 × 10<sup>5</sup> copies/L. The amount of SARS-CoV-2 RNA has increased approximately 4 times from the lag phase (January-March) to the log phase (April-May). Spearman's correlation coefficient revealed that correlation between estimated infected population and weekly reported cases was statistically significant (p-value = 0.017). SARS-CoV-2 RNA in influent had a statistically significant relationship with weekly reported cases (r = 0.481, p-value < 0.001). Lag time analysis revealed early warning 1-3 weeks before rising covid-19 cases observed. GIS was applied for spatial-temporal analysis at the province level, suggesting real time dashboard should be further developed.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9663"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926235/pdf/","citationCount":"0","resultStr":"{\"title\":\"Measuring SARS-CoV-2 RNA in Bangkok wastewater treatment plants and estimating infected population after fully opening the country in 2023, Thailand.\",\"authors\":\"Thanchira Saita, Bussarakam Thitanuwat, Nattamon Niyomdecha, Jarunee Prasertsopon, Hatairat Lerdsamran, Pilaipan Puthavathana, Pirom Noisumdaeng\",\"doi\":\"10.1038/s41598-025-94938-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Wastewater-based epidemiology (WBE) has been employed for monitoring the presence of SARS-CoV-2 infected population. Herein, the study aims to apply the WBE for surveillance and monitoring SARS-CoV-2 in Bangkok, where the highest official covid-19 cases reported in Thailand, during the fully opening for international tourists in early 2023. A total of 200 wastewater samples (100 influent and 100 effluent samples) were collected from 10 wastewater treatment plants (WWTPs) during January-May 2023. SARS-CoV-2 RNA was detected by real time qRT-PCR with accounting for 51% (102/200). Of these, 88% (88/100) and 14% (14/100) were detected in influent and effluent samples, respectively. The SARS-CoV-2 RNA concentration was detected in ranged of 4.76 × 10<sup>2</sup>-1.48 × 10<sup>5</sup> copies/L. The amount of SARS-CoV-2 RNA has increased approximately 4 times from the lag phase (January-March) to the log phase (April-May). Spearman's correlation coefficient revealed that correlation between estimated infected population and weekly reported cases was statistically significant (p-value = 0.017). SARS-CoV-2 RNA in influent had a statistically significant relationship with weekly reported cases (r = 0.481, p-value < 0.001). Lag time analysis revealed early warning 1-3 weeks before rising covid-19 cases observed. GIS was applied for spatial-temporal analysis at the province level, suggesting real time dashboard should be further developed.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9663\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926235/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-94938-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-94938-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Measuring SARS-CoV-2 RNA in Bangkok wastewater treatment plants and estimating infected population after fully opening the country in 2023, Thailand.
Wastewater-based epidemiology (WBE) has been employed for monitoring the presence of SARS-CoV-2 infected population. Herein, the study aims to apply the WBE for surveillance and monitoring SARS-CoV-2 in Bangkok, where the highest official covid-19 cases reported in Thailand, during the fully opening for international tourists in early 2023. A total of 200 wastewater samples (100 influent and 100 effluent samples) were collected from 10 wastewater treatment plants (WWTPs) during January-May 2023. SARS-CoV-2 RNA was detected by real time qRT-PCR with accounting for 51% (102/200). Of these, 88% (88/100) and 14% (14/100) were detected in influent and effluent samples, respectively. The SARS-CoV-2 RNA concentration was detected in ranged of 4.76 × 102-1.48 × 105 copies/L. The amount of SARS-CoV-2 RNA has increased approximately 4 times from the lag phase (January-March) to the log phase (April-May). Spearman's correlation coefficient revealed that correlation between estimated infected population and weekly reported cases was statistically significant (p-value = 0.017). SARS-CoV-2 RNA in influent had a statistically significant relationship with weekly reported cases (r = 0.481, p-value < 0.001). Lag time analysis revealed early warning 1-3 weeks before rising covid-19 cases observed. GIS was applied for spatial-temporal analysis at the province level, suggesting real time dashboard should be further developed.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.