中国街道和邻里犯罪时空分布的LLM驱动数据集。

IF 6.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yan Zhang, Mei-Po Kwan, Libo Fang
{"title":"中国街道和邻里犯罪时空分布的LLM驱动数据集。","authors":"Yan Zhang, Mei-Po Kwan, Libo Fang","doi":"10.1038/s41597-025-04757-8","DOIUrl":null,"url":null,"abstract":"<p><p>Crime is a significant social, economic, and legal issue. This research presents an open-access spatiotemporal repository of street and neighborhood crime data, comprising approximately one million records of crimes in China, with specific geographic coordinates (latitude and longitude) and timestamps for each incident. The dataset is based on publicly available law court judgment documents. Artificial intelligence (AI) technologies are employed to extract crime events at the neighborhood or even building level from vast amounts of unstructured judicial text. This dataset enables more precise spatial analysis of crime incidents, offering valuable insights across interdisciplinary fields such as economics, sociology, and geography. It contributes significantly to the achievement of the United Nations Sustainable Development Goals (SDGs), particularly in fostering sustainable cities and communities, and plays a crucial role in advancing efforts to reduce all forms of violence and related mortality rates.</p>","PeriodicalId":21597,"journal":{"name":"Scientific Data","volume":"12 1","pages":"467"},"PeriodicalIF":6.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926219/pdf/","citationCount":"0","resultStr":"{\"title\":\"An LLM driven dataset on the spatiotemporal distributions of street and neighborhood crime in China.\",\"authors\":\"Yan Zhang, Mei-Po Kwan, Libo Fang\",\"doi\":\"10.1038/s41597-025-04757-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Crime is a significant social, economic, and legal issue. This research presents an open-access spatiotemporal repository of street and neighborhood crime data, comprising approximately one million records of crimes in China, with specific geographic coordinates (latitude and longitude) and timestamps for each incident. The dataset is based on publicly available law court judgment documents. Artificial intelligence (AI) technologies are employed to extract crime events at the neighborhood or even building level from vast amounts of unstructured judicial text. This dataset enables more precise spatial analysis of crime incidents, offering valuable insights across interdisciplinary fields such as economics, sociology, and geography. It contributes significantly to the achievement of the United Nations Sustainable Development Goals (SDGs), particularly in fostering sustainable cities and communities, and plays a crucial role in advancing efforts to reduce all forms of violence and related mortality rates.</p>\",\"PeriodicalId\":21597,\"journal\":{\"name\":\"Scientific Data\",\"volume\":\"12 1\",\"pages\":\"467\"},\"PeriodicalIF\":6.9000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11926219/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Data\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41597-025-04757-8\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Data","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41597-025-04757-8","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

犯罪是一个重大的社会、经济和法律问题。本研究提供了一个开放访问的街道和社区犯罪数据时空存储库,其中包括中国大约100万条犯罪记录,具有特定的地理坐标(纬度和经度)和每个事件的时间戳。该数据集基于公开的法院判决文件。人工智能(AI)技术被用于从大量非结构化的司法文本中提取社区甚至建筑级别的犯罪事件。该数据集可以对犯罪事件进行更精确的空间分析,为经济学、社会学和地理学等跨学科领域提供有价值的见解。它为实现联合国可持续发展目标作出了重大贡献,特别是在促进可持续城市和社区方面,并在推动减少一切形式暴力和相关死亡率的努力方面发挥着至关重要的作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An LLM driven dataset on the spatiotemporal distributions of street and neighborhood crime in China.

Crime is a significant social, economic, and legal issue. This research presents an open-access spatiotemporal repository of street and neighborhood crime data, comprising approximately one million records of crimes in China, with specific geographic coordinates (latitude and longitude) and timestamps for each incident. The dataset is based on publicly available law court judgment documents. Artificial intelligence (AI) technologies are employed to extract crime events at the neighborhood or even building level from vast amounts of unstructured judicial text. This dataset enables more precise spatial analysis of crime incidents, offering valuable insights across interdisciplinary fields such as economics, sociology, and geography. It contributes significantly to the achievement of the United Nations Sustainable Development Goals (SDGs), particularly in fostering sustainable cities and communities, and plays a crucial role in advancing efforts to reduce all forms of violence and related mortality rates.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Data
Scientific Data Social Sciences-Education
CiteScore
11.20
自引率
4.10%
发文量
689
审稿时长
16 weeks
期刊介绍: Scientific Data is an open-access journal focused on data, publishing descriptions of research datasets and articles on data sharing across natural sciences, medicine, engineering, and social sciences. Its goal is to enhance the sharing and reuse of scientific data, encourage broader data sharing, and acknowledge those who share their data. The journal primarily publishes Data Descriptors, which offer detailed descriptions of research datasets, including data collection methods and technical analyses validating data quality. These descriptors aim to facilitate data reuse rather than testing hypotheses or presenting new interpretations, methods, or in-depth analyses.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信