Ko Tahara, Carsten Milkowski, Chihiro Oda-Yamamizo
{"title":"水解单宁生物合成的阐释与重构。","authors":"Ko Tahara, Carsten Milkowski, Chihiro Oda-Yamamizo","doi":"10.5511/plantbiotechnology.24.0601a","DOIUrl":null,"url":null,"abstract":"<p><p>Hydrolyzable tannins (HTs) are a class of polyphenols produced mostly in core eudicot plants. They accumulate in various plant tissues and are considered to function as defense compounds that protect against herbivory, infections, and toxic metals (specifically aluminum ions). Moreover, HTs have industrial and pharmaceutical uses that benefit humans. Elucidating and reconstituting the biosynthesis of HTs is necessary for genetically engineering in planta functions and for efficiently producing HTs for human use. The biosynthesis of HTs is initiated by the formation of gallic acid from the shikimate pathway intermediate 3-dehydroshikimic acid, which is catalyzed by bifunctional dehydroquinate dehydratase/shikimate dehydrogenases (DQD/SDHs). In the second step, UDP glycosyltransferases (UGTs) esterify gallic acid with glucose to form β-glucogallin (1-<i>O</i>-galloyl-β-D-glucose). β-glucogallin is then converted to 1,2,3,4,6-penta-<i>O</i>-galloyl-β-D-glucose through a series of galloylation steps that are catalyzed by galloyltransferases, using β-glucogallin as a galloyl donor. Laccases subsequently catalyze the oxidative coupling between adjacent galloyl groups to form hexahydroxydiphenoyl (HHDP) groups, which are characteristic components of ellagitannins. Furthermore, monomeric ellagitannins can undergo oligomerization via intermolecular oxidative coupling, which is also catalyzed by laccases. To reconstitute the HT biosynthetic pathway in HT-non-accumulating plants, <i>DQD</i>/<i>SDH</i>s and <i>UGT</i>s from <i>Eucalyptus camaldulensis</i> were heterologously co-expressed in <i>Nicotiana benthamiana</i> leaves, which resulted in the production of gallic acid and β-glucogallin. In future studies, this transgenic system will be used to identify genes encoding galloyltransferases and laccases to further elucidate and reconstitute the HT biosynthetic pathway.</p>","PeriodicalId":20411,"journal":{"name":"Plant Biotechnology","volume":"41 3","pages":"203-212"},"PeriodicalIF":1.4000,"publicationDate":"2024-09-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921145/pdf/","citationCount":"0","resultStr":"{\"title\":\"Elucidation and reconstitution of hydrolyzable tannin biosynthesis.\",\"authors\":\"Ko Tahara, Carsten Milkowski, Chihiro Oda-Yamamizo\",\"doi\":\"10.5511/plantbiotechnology.24.0601a\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Hydrolyzable tannins (HTs) are a class of polyphenols produced mostly in core eudicot plants. They accumulate in various plant tissues and are considered to function as defense compounds that protect against herbivory, infections, and toxic metals (specifically aluminum ions). Moreover, HTs have industrial and pharmaceutical uses that benefit humans. Elucidating and reconstituting the biosynthesis of HTs is necessary for genetically engineering in planta functions and for efficiently producing HTs for human use. The biosynthesis of HTs is initiated by the formation of gallic acid from the shikimate pathway intermediate 3-dehydroshikimic acid, which is catalyzed by bifunctional dehydroquinate dehydratase/shikimate dehydrogenases (DQD/SDHs). In the second step, UDP glycosyltransferases (UGTs) esterify gallic acid with glucose to form β-glucogallin (1-<i>O</i>-galloyl-β-D-glucose). β-glucogallin is then converted to 1,2,3,4,6-penta-<i>O</i>-galloyl-β-D-glucose through a series of galloylation steps that are catalyzed by galloyltransferases, using β-glucogallin as a galloyl donor. Laccases subsequently catalyze the oxidative coupling between adjacent galloyl groups to form hexahydroxydiphenoyl (HHDP) groups, which are characteristic components of ellagitannins. Furthermore, monomeric ellagitannins can undergo oligomerization via intermolecular oxidative coupling, which is also catalyzed by laccases. To reconstitute the HT biosynthetic pathway in HT-non-accumulating plants, <i>DQD</i>/<i>SDH</i>s and <i>UGT</i>s from <i>Eucalyptus camaldulensis</i> were heterologously co-expressed in <i>Nicotiana benthamiana</i> leaves, which resulted in the production of gallic acid and β-glucogallin. In future studies, this transgenic system will be used to identify genes encoding galloyltransferases and laccases to further elucidate and reconstitute the HT biosynthetic pathway.</p>\",\"PeriodicalId\":20411,\"journal\":{\"name\":\"Plant Biotechnology\",\"volume\":\"41 3\",\"pages\":\"203-212\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-09-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921145/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Plant Biotechnology\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.5511/plantbiotechnology.24.0601a\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Plant Biotechnology","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.5511/plantbiotechnology.24.0601a","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
引用次数: 0
摘要
水解单宁(HTs)是一类多酚类物质,主要产自苦楝属植物。它们在各种植物组织中积累,被认为是一种防御化合物,可以保护植物免受食草性感染和有毒金属(特别是铝离子)的侵害。此外,高温超导在工业和医药方面的用途对人类有益。阐明和重建热转化酶的生物合成对于植物功能的基因工程和高效生产供人类使用的热转化酶是必要的。HTs的生物合成是由莽草酸途径中间体3-脱氢莽草酸生成没食子酸启动的,该过程由双功能脱氢醌脱氢酶/莽草酸脱氢酶(DQD/SDHs)催化。在第二步中,UDP糖基转移酶(UGTs)将没食子酸与葡萄糖酯化,形成β-glucogallin (1- o -没食子酰-β- d -葡萄糖)。然后,通过一系列的没食子酰基转移酶催化的没食子酰基化步骤,以β-glucogallin作为没食子酰基供体,将β-glucogallin转化为1,2,3,4,6-penta- o -没食子酰基-β- d -葡萄糖。漆酶随后催化相邻没食子酰基之间的氧化偶联形成六羟基二酚(HHDP)基团,这是鞣花单宁的特征成分。此外,单体鞣花单宁可以通过分子间氧化偶联进行低聚化,这也由漆酶催化。为了重新构建非HT积累植物的HT生物合成途径,我们将camaldulensis的DQD/SDHs和UGTs异源共表达于benthamiana烟叶中,从而产生没食子酸和β-glucogallin。在未来的研究中,该转基因系统将用于鉴定编码没食子酰基转移酶和漆酶的基因,进一步阐明和重建HT的生物合成途径。
Elucidation and reconstitution of hydrolyzable tannin biosynthesis.
Hydrolyzable tannins (HTs) are a class of polyphenols produced mostly in core eudicot plants. They accumulate in various plant tissues and are considered to function as defense compounds that protect against herbivory, infections, and toxic metals (specifically aluminum ions). Moreover, HTs have industrial and pharmaceutical uses that benefit humans. Elucidating and reconstituting the biosynthesis of HTs is necessary for genetically engineering in planta functions and for efficiently producing HTs for human use. The biosynthesis of HTs is initiated by the formation of gallic acid from the shikimate pathway intermediate 3-dehydroshikimic acid, which is catalyzed by bifunctional dehydroquinate dehydratase/shikimate dehydrogenases (DQD/SDHs). In the second step, UDP glycosyltransferases (UGTs) esterify gallic acid with glucose to form β-glucogallin (1-O-galloyl-β-D-glucose). β-glucogallin is then converted to 1,2,3,4,6-penta-O-galloyl-β-D-glucose through a series of galloylation steps that are catalyzed by galloyltransferases, using β-glucogallin as a galloyl donor. Laccases subsequently catalyze the oxidative coupling between adjacent galloyl groups to form hexahydroxydiphenoyl (HHDP) groups, which are characteristic components of ellagitannins. Furthermore, monomeric ellagitannins can undergo oligomerization via intermolecular oxidative coupling, which is also catalyzed by laccases. To reconstitute the HT biosynthetic pathway in HT-non-accumulating plants, DQD/SDHs and UGTs from Eucalyptus camaldulensis were heterologously co-expressed in Nicotiana benthamiana leaves, which resulted in the production of gallic acid and β-glucogallin. In future studies, this transgenic system will be used to identify genes encoding galloyltransferases and laccases to further elucidate and reconstitute the HT biosynthetic pathway.
期刊介绍:
Plant Biotechnology is an international, open-access, and online journal, published every three months by the Japanese Society for Plant Biotechnology. The journal, first published in 1984 as the predecessor journal, “Plant Tissue Culture Letters” and became its present form in 1997 when the society name was renamed to Japanese Society for Plant Cell and Molecular Biology, publishes findings in the areas from basic- to application research of plant biotechnology. The aim of Plant Biotechnology is to publish original and high-impact papers, in the most rapid turnaround time for reviewing, on the plant biotechnology including tissue culture, production of specialized metabolites, transgenic technology, and genome editing technology, and also on the related research fields including molecular biology, cell biology, genetics, plant breeding, plant physiology and biochemistry, metabolic engineering, synthetic biology, and bioinformatics.