Rubén Casanova-Sáez, Aleš Pěnčík, Rafael Muñoz-Viana, Federica Brunoni, Rui Pinto, Ondřej Novák, Karin Ljung, Eduardo Mateo-Bonmatí
{"title":"寻找IAA代谢突变体的合适策略。","authors":"Rubén Casanova-Sáez, Aleš Pěnčík, Rafael Muñoz-Viana, Federica Brunoni, Rui Pinto, Ondřej Novák, Karin Ljung, Eduardo Mateo-Bonmatí","doi":"10.1111/ppl.70166","DOIUrl":null,"url":null,"abstract":"<p><p>Indole-3-acetic acid (IAA), the most common form of auxin, is involved in a great range of plant physiological processes. IAA is synthesized from the amino acid tryptophan and can be transported and inactivated in a myriad of ways. Despite intense research efforts, there are still dark corners in our comprehension of IAA metabolism and its interplays with other pathways. Genetic screens are a powerful tool for unbiasedly looking for new players in a given biological process. However, pleiotropism of auxin-related phenotypes and indirect effects make it necessary to incorporate additional screening steps to specifically find mutants affected in IAA homeostasis. We previously developed and validated a high-throughput methodology to simultaneously quantify IAA, key precursors, and inactive forms from as little as 10 mg of fresh tissue. We have carried out a genetic screening to identify mutants involved in IAA metabolism. Auxin reporters DR5<sub>pro</sub>:VENUS and 35S<sub>pro</sub>:DII-VENUS were EMS-mutagenized and subjected to a parallel morphological and reporter-signal pre-screen. We then obtained the auxin metabolite profile of 325 M<sub>3</sub> selected lines and used multivariate data analysis to identify potential IAA-metabolism mutants. To test the screening design, we identified the causal mutations in three of the candidate lines by mapping-by-sequencing: dii365.3, dii571.1 and dr693. These carry new alleles of CYP83A1, MIAO, and SUPERROOT2, respectively, all of which have been previously involved in auxin homeostasis. Our results support the suitability of this approach to find new genes involved in IAA metabolism.</p>","PeriodicalId":20164,"journal":{"name":"Physiologia plantarum","volume":"177 2","pages":"e70166"},"PeriodicalIF":5.4000,"publicationDate":"2025-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925725/pdf/","citationCount":"0","resultStr":"{\"title\":\"A suitable strategy to find IAA metabolism mutants.\",\"authors\":\"Rubén Casanova-Sáez, Aleš Pěnčík, Rafael Muñoz-Viana, Federica Brunoni, Rui Pinto, Ondřej Novák, Karin Ljung, Eduardo Mateo-Bonmatí\",\"doi\":\"10.1111/ppl.70166\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Indole-3-acetic acid (IAA), the most common form of auxin, is involved in a great range of plant physiological processes. IAA is synthesized from the amino acid tryptophan and can be transported and inactivated in a myriad of ways. Despite intense research efforts, there are still dark corners in our comprehension of IAA metabolism and its interplays with other pathways. Genetic screens are a powerful tool for unbiasedly looking for new players in a given biological process. However, pleiotropism of auxin-related phenotypes and indirect effects make it necessary to incorporate additional screening steps to specifically find mutants affected in IAA homeostasis. We previously developed and validated a high-throughput methodology to simultaneously quantify IAA, key precursors, and inactive forms from as little as 10 mg of fresh tissue. We have carried out a genetic screening to identify mutants involved in IAA metabolism. Auxin reporters DR5<sub>pro</sub>:VENUS and 35S<sub>pro</sub>:DII-VENUS were EMS-mutagenized and subjected to a parallel morphological and reporter-signal pre-screen. We then obtained the auxin metabolite profile of 325 M<sub>3</sub> selected lines and used multivariate data analysis to identify potential IAA-metabolism mutants. To test the screening design, we identified the causal mutations in three of the candidate lines by mapping-by-sequencing: dii365.3, dii571.1 and dr693. These carry new alleles of CYP83A1, MIAO, and SUPERROOT2, respectively, all of which have been previously involved in auxin homeostasis. Our results support the suitability of this approach to find new genes involved in IAA metabolism.</p>\",\"PeriodicalId\":20164,\"journal\":{\"name\":\"Physiologia plantarum\",\"volume\":\"177 2\",\"pages\":\"e70166\"},\"PeriodicalIF\":5.4000,\"publicationDate\":\"2025-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925725/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Physiologia plantarum\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1111/ppl.70166\",\"RegionNum\":2,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Physiologia plantarum","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1111/ppl.70166","RegionNum":2,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
A suitable strategy to find IAA metabolism mutants.
Indole-3-acetic acid (IAA), the most common form of auxin, is involved in a great range of plant physiological processes. IAA is synthesized from the amino acid tryptophan and can be transported and inactivated in a myriad of ways. Despite intense research efforts, there are still dark corners in our comprehension of IAA metabolism and its interplays with other pathways. Genetic screens are a powerful tool for unbiasedly looking for new players in a given biological process. However, pleiotropism of auxin-related phenotypes and indirect effects make it necessary to incorporate additional screening steps to specifically find mutants affected in IAA homeostasis. We previously developed and validated a high-throughput methodology to simultaneously quantify IAA, key precursors, and inactive forms from as little as 10 mg of fresh tissue. We have carried out a genetic screening to identify mutants involved in IAA metabolism. Auxin reporters DR5pro:VENUS and 35Spro:DII-VENUS were EMS-mutagenized and subjected to a parallel morphological and reporter-signal pre-screen. We then obtained the auxin metabolite profile of 325 M3 selected lines and used multivariate data analysis to identify potential IAA-metabolism mutants. To test the screening design, we identified the causal mutations in three of the candidate lines by mapping-by-sequencing: dii365.3, dii571.1 and dr693. These carry new alleles of CYP83A1, MIAO, and SUPERROOT2, respectively, all of which have been previously involved in auxin homeostasis. Our results support the suitability of this approach to find new genes involved in IAA metabolism.
期刊介绍:
Physiologia Plantarum is an international journal committed to publishing the best full-length original research papers that advance our understanding of primary mechanisms of plant development, growth and productivity as well as plant interactions with the biotic and abiotic environment. All organisational levels of experimental plant biology – from molecular and cell biology, biochemistry and biophysics to ecophysiology and global change biology – fall within the scope of the journal. The content is distributed between 5 main subject areas supervised by Subject Editors specialised in the respective domain: (1) biochemistry and metabolism, (2) ecophysiology, stress and adaptation, (3) uptake, transport and assimilation, (4) development, growth and differentiation, (5) photobiology and photosynthesis.