中国24小时无间隙地面PM10实时制图。

IF 16.3 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
National Science Review Pub Date : 2024-12-09 eCollection Date: 2025-02-01 DOI:10.1093/nsr/nwae446
Xutao Zhang, Ke Gui, Hengheng Zhao, Nanxuan Shang, Zhaoliang Zeng, Wenrui Yao, Lei Li, Yu Zheng, Hujia Zhao, Yurun Liu, Yucong Miao, Yue Peng, Ye Fei, Fugang Li, Baoxin Li, Hong Wang, Zhili Wang, Yaqiang Wang, Huizheng Che, Xiaoye Zhang
{"title":"中国24小时无间隙地面PM10实时制图。","authors":"Xutao Zhang, Ke Gui, Hengheng Zhao, Nanxuan Shang, Zhaoliang Zeng, Wenrui Yao, Lei Li, Yu Zheng, Hujia Zhao, Yurun Liu, Yucong Miao, Yue Peng, Ye Fei, Fugang Li, Baoxin Li, Hong Wang, Zhili Wang, Yaqiang Wang, Huizheng Che, Xiaoye Zhang","doi":"10.1093/nsr/nwae446","DOIUrl":null,"url":null,"abstract":"<p><p>Large-scale mapping of surface coarse particulate matter (PM<sub>10</sub>) concentration remains a key focus for air quality monitoring. Satellite aerosol optical depth (AOD)-based data fusion approaches decouple the non-linear AOD-PM<sub>10</sub> relationship, enabling high-resolution PM<sub>10</sub> data acquisition, but are limited by spatial incompleteness and the absence of nighttime data. Here, a gridded visibility-based real-time surface PM<sub>10</sub> retrieval (RT-SPMR) framework for China is introduced, addressing the gap in seamless hourly PM<sub>10</sub> data within the 24-hour cycle. This framework utilizes multisource data inputs and dynamically updated machine-learning models to produce 6.25-km gridded 24-hour PM<sub>10</sub> data. Cross-validation showed that the RT-SPMR model's daily retrieval accuracy surpassed prior studies. Additionally, through rolling iterative validation experiments, the model exhibited strong generalization capability and stability, demonstrating its suitability for operational deployment. Taking a record-breaking dust storm as an example, the model proved effective in tracking the fine-scale evolution of the dust intrusion process, especially in under-observed areas. Consequently, the operational RT-SPMR framework provides comprehensive real-time capability for monitoring PM<sub>10</sub> pollution in China, and has the potential to improve the accuracy of dust storm forecasting models by enhancing the PM<sub>10</sub> initial field.</p>","PeriodicalId":18842,"journal":{"name":"National Science Review","volume":"12 2","pages":"nwae446"},"PeriodicalIF":16.3000,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925011/pdf/","citationCount":"0","resultStr":"{\"title\":\"Real-time mapping of gapless 24-hour surface PM<sub>10</sub> in China.\",\"authors\":\"Xutao Zhang, Ke Gui, Hengheng Zhao, Nanxuan Shang, Zhaoliang Zeng, Wenrui Yao, Lei Li, Yu Zheng, Hujia Zhao, Yurun Liu, Yucong Miao, Yue Peng, Ye Fei, Fugang Li, Baoxin Li, Hong Wang, Zhili Wang, Yaqiang Wang, Huizheng Che, Xiaoye Zhang\",\"doi\":\"10.1093/nsr/nwae446\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Large-scale mapping of surface coarse particulate matter (PM<sub>10</sub>) concentration remains a key focus for air quality monitoring. Satellite aerosol optical depth (AOD)-based data fusion approaches decouple the non-linear AOD-PM<sub>10</sub> relationship, enabling high-resolution PM<sub>10</sub> data acquisition, but are limited by spatial incompleteness and the absence of nighttime data. Here, a gridded visibility-based real-time surface PM<sub>10</sub> retrieval (RT-SPMR) framework for China is introduced, addressing the gap in seamless hourly PM<sub>10</sub> data within the 24-hour cycle. This framework utilizes multisource data inputs and dynamically updated machine-learning models to produce 6.25-km gridded 24-hour PM<sub>10</sub> data. Cross-validation showed that the RT-SPMR model's daily retrieval accuracy surpassed prior studies. Additionally, through rolling iterative validation experiments, the model exhibited strong generalization capability and stability, demonstrating its suitability for operational deployment. Taking a record-breaking dust storm as an example, the model proved effective in tracking the fine-scale evolution of the dust intrusion process, especially in under-observed areas. Consequently, the operational RT-SPMR framework provides comprehensive real-time capability for monitoring PM<sub>10</sub> pollution in China, and has the potential to improve the accuracy of dust storm forecasting models by enhancing the PM<sub>10</sub> initial field.</p>\",\"PeriodicalId\":18842,\"journal\":{\"name\":\"National Science Review\",\"volume\":\"12 2\",\"pages\":\"nwae446\"},\"PeriodicalIF\":16.3000,\"publicationDate\":\"2024-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925011/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"National Science Review\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1093/nsr/nwae446\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/2/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"National Science Review","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1093/nsr/nwae446","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/2/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

地表粗颗粒物质(PM10)浓度的大规模测绘仍然是空气质量监测的重点。基于卫星气溶胶光学深度(AOD)的数据融合方法解耦了非线性AOD-PM10关系,实现了高分辨率PM10数据采集,但受到空间不完整和缺乏夜间数据的限制。本文介绍了一种基于网格可视性的中国地面PM10实时检索(RT-SPMR)框架,解决了24小时周期内无缝每小时PM10数据的差距。该框架利用多源数据输入和动态更新的机器学习模型生成6.25公里网格化24小时PM10数据。交叉验证表明,RT-SPMR模型的日检索精度优于以往的研究。此外,通过滚动迭代验证实验,该模型具有较强的泛化能力和稳定性,证明了其适合作战部署。以一次破纪录沙尘暴为例,该模型对跟踪沙尘侵入过程的精细尺度演化是有效的,特别是在观测不足的地区。因此,可操作的RT-SPMR框架为中国PM10污染监测提供了全面的实时能力,并有可能通过增强PM10初始场来提高沙尘暴预报模式的准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Real-time mapping of gapless 24-hour surface PM10 in China.

Large-scale mapping of surface coarse particulate matter (PM10) concentration remains a key focus for air quality monitoring. Satellite aerosol optical depth (AOD)-based data fusion approaches decouple the non-linear AOD-PM10 relationship, enabling high-resolution PM10 data acquisition, but are limited by spatial incompleteness and the absence of nighttime data. Here, a gridded visibility-based real-time surface PM10 retrieval (RT-SPMR) framework for China is introduced, addressing the gap in seamless hourly PM10 data within the 24-hour cycle. This framework utilizes multisource data inputs and dynamically updated machine-learning models to produce 6.25-km gridded 24-hour PM10 data. Cross-validation showed that the RT-SPMR model's daily retrieval accuracy surpassed prior studies. Additionally, through rolling iterative validation experiments, the model exhibited strong generalization capability and stability, demonstrating its suitability for operational deployment. Taking a record-breaking dust storm as an example, the model proved effective in tracking the fine-scale evolution of the dust intrusion process, especially in under-observed areas. Consequently, the operational RT-SPMR framework provides comprehensive real-time capability for monitoring PM10 pollution in China, and has the potential to improve the accuracy of dust storm forecasting models by enhancing the PM10 initial field.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
National Science Review
National Science Review MULTIDISCIPLINARY SCIENCES-
CiteScore
24.10
自引率
1.90%
发文量
249
审稿时长
13 weeks
期刊介绍: National Science Review (NSR; ISSN abbreviation: Natl. Sci. Rev.) is an English-language peer-reviewed multidisciplinary open-access scientific journal published by Oxford University Press under the auspices of the Chinese Academy of Sciences.According to Journal Citation Reports, its 2021 impact factor was 23.178. National Science Review publishes both review articles and perspectives as well as original research in the form of brief communications and research articles.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信