任务转换和额叶皮质功能:一项近红外光谱研究。

IF 4.7 2区 医学 Q1 NEUROIMAGING
Michael K. Yeung
{"title":"任务转换和额叶皮质功能:一项近红外光谱研究。","authors":"Michael K. Yeung","doi":"10.1016/j.neuroimage.2025.121160","DOIUrl":null,"url":null,"abstract":"<div><div>Switching between tasks is slower and more error-prone than performing a single task. While studies have compared task-switching and associated neural processing between younger and older adults, knowledge of age-related differences in components of task-switching across adulthood, and associated neural mechanisms, remains elusive. In this study, these age differences were investigated using functional near-infrared spectroscopy (fNIRS). A sample of 132 adults aged 18–79 undertook a variant of the Trail Making Test and a task-switching paradigm. Hemodynamic changes in the bilateral frontal cortex during the task-switching paradigm were measured using a 48-channel fNIRS device. Behavioral results showed that age showed a negative linear relationship with time taken to task-switch and a negative quadratic relationship with success in task-switching. In addition, fNIRS results showed that age had a positive linear relationship with activation in the left posterolateral frontal cortex across trial conditions. Among older adults, who had slower and less accurate switch performance than younger adults, greater left posterolateral frontal activation was associated with faster and more accurate switch performance. Therefore, different aspects of task-switching performance exhibit varying patterns of age-related differences across adulthood. Increased engagement of the left posterolateral frontal cortex, which plays a specific role in reconfiguring and implementing relevant task rules, may help older adults compensate for declined switch performance.</div></div>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":"310 ","pages":"Article 121160"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Task-switching and frontal cortex functioning across adulthood: An fNIRS study\",\"authors\":\"Michael K. Yeung\",\"doi\":\"10.1016/j.neuroimage.2025.121160\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Switching between tasks is slower and more error-prone than performing a single task. While studies have compared task-switching and associated neural processing between younger and older adults, knowledge of age-related differences in components of task-switching across adulthood, and associated neural mechanisms, remains elusive. In this study, these age differences were investigated using functional near-infrared spectroscopy (fNIRS). A sample of 132 adults aged 18–79 undertook a variant of the Trail Making Test and a task-switching paradigm. Hemodynamic changes in the bilateral frontal cortex during the task-switching paradigm were measured using a 48-channel fNIRS device. Behavioral results showed that age showed a negative linear relationship with time taken to task-switch and a negative quadratic relationship with success in task-switching. In addition, fNIRS results showed that age had a positive linear relationship with activation in the left posterolateral frontal cortex across trial conditions. Among older adults, who had slower and less accurate switch performance than younger adults, greater left posterolateral frontal activation was associated with faster and more accurate switch performance. Therefore, different aspects of task-switching performance exhibit varying patterns of age-related differences across adulthood. Increased engagement of the left posterolateral frontal cortex, which plays a specific role in reconfiguring and implementing relevant task rules, may help older adults compensate for declined switch performance.</div></div>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\"310 \",\"pages\":\"Article 121160\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1053811925001624\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1053811925001624","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

在任务之间切换比执行单个任务更慢,更容易出错。虽然研究已经比较了年轻人和老年人之间的任务转换和相关的神经处理,但关于成年期任务转换组成部分的年龄相关差异以及相关的神经机制的知识仍然难以捉摸。在本研究中,使用功能近红外光谱(fNIRS)研究了这些年龄差异。132名年龄在18-79岁之间的成年人接受了一项不同的线索制作测试和一项任务转换范式。使用48通道fNIRS设备测量任务转换范式时双侧额叶皮层的血流动力学变化。行为学结果显示,年龄与任务切换时间呈负线性关系,与任务切换成功呈负二次关系。此外,fNIRS结果显示,在不同的试验条件下,年龄与左后外侧额叶皮层的激活呈线性正相关。在老年人中,与年轻人相比,他们的开关动作更慢、更不准确,更大的左后外侧额叶激活与更快、更准确的开关动作有关。因此,任务转换表现的不同方面在成年期表现出不同的年龄相关差异模式。左侧后外侧额叶皮层在重新配置和执行相关任务规则中起着特殊作用,其参与程度的增加可能有助于老年人弥补开关性能的下降。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Task-switching and frontal cortex functioning across adulthood: An fNIRS study
Switching between tasks is slower and more error-prone than performing a single task. While studies have compared task-switching and associated neural processing between younger and older adults, knowledge of age-related differences in components of task-switching across adulthood, and associated neural mechanisms, remains elusive. In this study, these age differences were investigated using functional near-infrared spectroscopy (fNIRS). A sample of 132 adults aged 18–79 undertook a variant of the Trail Making Test and a task-switching paradigm. Hemodynamic changes in the bilateral frontal cortex during the task-switching paradigm were measured using a 48-channel fNIRS device. Behavioral results showed that age showed a negative linear relationship with time taken to task-switch and a negative quadratic relationship with success in task-switching. In addition, fNIRS results showed that age had a positive linear relationship with activation in the left posterolateral frontal cortex across trial conditions. Among older adults, who had slower and less accurate switch performance than younger adults, greater left posterolateral frontal activation was associated with faster and more accurate switch performance. Therefore, different aspects of task-switching performance exhibit varying patterns of age-related differences across adulthood. Increased engagement of the left posterolateral frontal cortex, which plays a specific role in reconfiguring and implementing relevant task rules, may help older adults compensate for declined switch performance.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信