丙泊酚麻醉期间脑电图微状态的频率和状态依赖性动态变化。

IF 4.7 2区 医学 Q1 NEUROIMAGING
Yun Zhang, Haidong Wang, Fei Yan, Dawei Song, Qiang Wang, Yubo Wang, Liyu Huang
{"title":"丙泊酚麻醉期间脑电图微状态的频率和状态依赖性动态变化。","authors":"Yun Zhang, Haidong Wang, Fei Yan, Dawei Song, Qiang Wang, Yubo Wang, Liyu Huang","doi":"10.1016/j.neuroimage.2025.121159","DOIUrl":null,"url":null,"abstract":"<p><p>Electroencephalography microstate analysis has emerged as a powerful tool for investigating brain dynamics during anesthesia-induced unconsciousness. However, existing studies typically analyze EEG signals across broad frequency bands, leaving the frequency-specific temporal characteristics of microstates poorly understood. In this study, we investigated frequency-specific EEG microstate features in the delta (0.5-4 Hz) and EEG-without-delta (4-30 Hz) frequency bands during propofol anesthesia. Sixty-channel EEG recordings were collected from 18 healthy male participants during wakefulness and propofol-induced unconsciousness. Microstate analysis was conducted separately for delta and EEG-without-delta frequency bands and microstate features were compared across frequency bands and conscious states. Our results revealed eight consistent microstate classes (MS1-MS8) with high topographic similarity across frequency bands, while global explained variance (GEV), mean duration (MeanDur), occurrence (Occ), and coverage (Cov) exhibited significant frequency- and state-dependent variations during propofol anesthesia. In the delta band, propofol-induced unconsciousness was associated with significantly longer MeanDur for microstate classes of MS4, MS5, and MS6 (p < 0.05). In the EEG-without-delta band, GEV, Cov, and Occ significantly increased for MS1 and MS3 (p < 0.01) and decreased for MS2 and MS4 (p < 0.05) during unconsciousness. Notably, microstate features in the EEG-without-delta band showed better sensitivity for discriminating conscious states, achieving a classification accuracy of 0.944. These findings emphasize the importance of frequency-specific microstate analysis in unraveling the neural dynamics of anesthesia-induced unconsciousness and highlight its potential clinical applications for improving anesthesia depth monitoring.</p>","PeriodicalId":19299,"journal":{"name":"NeuroImage","volume":" ","pages":"121159"},"PeriodicalIF":4.7000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Frequency- and State-Dependent Dynamics of EEG Microstates During Propofol Anesthesia.\",\"authors\":\"Yun Zhang, Haidong Wang, Fei Yan, Dawei Song, Qiang Wang, Yubo Wang, Liyu Huang\",\"doi\":\"10.1016/j.neuroimage.2025.121159\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Electroencephalography microstate analysis has emerged as a powerful tool for investigating brain dynamics during anesthesia-induced unconsciousness. However, existing studies typically analyze EEG signals across broad frequency bands, leaving the frequency-specific temporal characteristics of microstates poorly understood. In this study, we investigated frequency-specific EEG microstate features in the delta (0.5-4 Hz) and EEG-without-delta (4-30 Hz) frequency bands during propofol anesthesia. Sixty-channel EEG recordings were collected from 18 healthy male participants during wakefulness and propofol-induced unconsciousness. Microstate analysis was conducted separately for delta and EEG-without-delta frequency bands and microstate features were compared across frequency bands and conscious states. Our results revealed eight consistent microstate classes (MS1-MS8) with high topographic similarity across frequency bands, while global explained variance (GEV), mean duration (MeanDur), occurrence (Occ), and coverage (Cov) exhibited significant frequency- and state-dependent variations during propofol anesthesia. In the delta band, propofol-induced unconsciousness was associated with significantly longer MeanDur for microstate classes of MS4, MS5, and MS6 (p < 0.05). In the EEG-without-delta band, GEV, Cov, and Occ significantly increased for MS1 and MS3 (p < 0.01) and decreased for MS2 and MS4 (p < 0.05) during unconsciousness. Notably, microstate features in the EEG-without-delta band showed better sensitivity for discriminating conscious states, achieving a classification accuracy of 0.944. These findings emphasize the importance of frequency-specific microstate analysis in unraveling the neural dynamics of anesthesia-induced unconsciousness and highlight its potential clinical applications for improving anesthesia depth monitoring.</p>\",\"PeriodicalId\":19299,\"journal\":{\"name\":\"NeuroImage\",\"volume\":\" \",\"pages\":\"121159\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"NeuroImage\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1016/j.neuroimage.2025.121159\",\"RegionNum\":2,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"NEUROIMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"NeuroImage","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1016/j.neuroimage.2025.121159","RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"NEUROIMAGING","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Frequency- and State-Dependent Dynamics of EEG Microstates During Propofol Anesthesia.

Electroencephalography microstate analysis has emerged as a powerful tool for investigating brain dynamics during anesthesia-induced unconsciousness. However, existing studies typically analyze EEG signals across broad frequency bands, leaving the frequency-specific temporal characteristics of microstates poorly understood. In this study, we investigated frequency-specific EEG microstate features in the delta (0.5-4 Hz) and EEG-without-delta (4-30 Hz) frequency bands during propofol anesthesia. Sixty-channel EEG recordings were collected from 18 healthy male participants during wakefulness and propofol-induced unconsciousness. Microstate analysis was conducted separately for delta and EEG-without-delta frequency bands and microstate features were compared across frequency bands and conscious states. Our results revealed eight consistent microstate classes (MS1-MS8) with high topographic similarity across frequency bands, while global explained variance (GEV), mean duration (MeanDur), occurrence (Occ), and coverage (Cov) exhibited significant frequency- and state-dependent variations during propofol anesthesia. In the delta band, propofol-induced unconsciousness was associated with significantly longer MeanDur for microstate classes of MS4, MS5, and MS6 (p < 0.05). In the EEG-without-delta band, GEV, Cov, and Occ significantly increased for MS1 and MS3 (p < 0.01) and decreased for MS2 and MS4 (p < 0.05) during unconsciousness. Notably, microstate features in the EEG-without-delta band showed better sensitivity for discriminating conscious states, achieving a classification accuracy of 0.944. These findings emphasize the importance of frequency-specific microstate analysis in unraveling the neural dynamics of anesthesia-induced unconsciousness and highlight its potential clinical applications for improving anesthesia depth monitoring.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
NeuroImage
NeuroImage 医学-核医学
CiteScore
11.30
自引率
10.50%
发文量
809
审稿时长
63 days
期刊介绍: NeuroImage, a Journal of Brain Function provides a vehicle for communicating important advances in acquiring, analyzing, and modelling neuroimaging data and in applying these techniques to the study of structure-function and brain-behavior relationships. Though the emphasis is on the macroscopic level of human brain organization, meso-and microscopic neuroimaging across all species will be considered if informative for understanding the aforementioned relationships.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信