IF 3.4 3区 医学 Q2 MEDICINE, RESEARCH & EXPERIMENTAL
Molecular medicine reports Pub Date : 2025-05-01 Epub Date: 2025-03-21 DOI:10.3892/mmr.2025.13500
Yi Ou, Wenjuan Zhang
{"title":"Obacunone inhibits ferroptosis through regulation of Nrf2 homeostasis to treat diabetic nephropathy.","authors":"Yi Ou, Wenjuan Zhang","doi":"10.3892/mmr.2025.13500","DOIUrl":null,"url":null,"abstract":"<p><p>Diabetic nephropathy (DN), a prevalent and severe microvascular complication of diabetes, often leads to end‑stage renal disease and poses a threat to patient survival. However, to the best of our knowledge, there are currently no effective strategies available for the treatment of DN. Obacunone (OB), a small‑molecule natural compound derived from Citrus plants, exhibits various pharmacological effects; however, the impact of OB on DN remains to be fully elucidated. Therefore, the present study aimed to explore the effects and potential mechanisms of OB in DN. In the current study, DN models were created <i>in vitro</i> by treating HK‑2 cells with high‑glucose (HG) levels, and in vivo by administering a HG and high‑fat diet along with intraperitoneal injections of streptozotocin to Sprague‑Dawley rats. Subsequently, cell viability was evaluated using the Cell Counting Kit‑8 assay, while ferroptosis‑related marker levels were determined using biochemical kits, immunofluorescence and western blotting. Activation and homeostasis of the nuclear factor erythroid 2‑related factor 2 (Nrf2) signaling pathway were analyzed using western blotting, co‑immunoprecipitation and reverse transcription‑quantitative PCR. In addition, alterations in renal function parameters and the severity of renal pathological injury in rats were examined. The <i>in vitro</i> experiments demonstrated that OB significantly promoted cell viability and inhibited ferroptosis, as evidenced by increased glutathione peroxidase 4 and SLC7A11 expression, and decreased levels of malondialdehyde, ferrous ion and reactive oxygen species (P<0.05). Additionally, OB activated the Nrf2 signaling pathway, blocked the interaction between Nrf2 and Kelch‑like ECH‑associated protein 1, and suppressed Nrf2 ubiquitination and degradation (P<0.05). In vivo, OB administration improved renal function parameters, including serum creatinine and blood urea nitrogen levels (P<0.05), and reduced renal pathological injury, in comparison with the DN group. The results of the present study indicated that OB, a natural small molecule, exhibited significant anti‑DN effects, possibly through the regulation of Nrf2 homeostasis to inhibit ferroptosis. Overall, this study provides new evidence for OB as a potential clinical treatment for DN.</p>","PeriodicalId":18818,"journal":{"name":"Molecular medicine reports","volume":"31 5","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2025-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11948956/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Molecular medicine reports","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.3892/mmr.2025.13500","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/21 0:00:00","PubModel":"Epub","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

糖尿病肾病(DN)是一种普遍而严重的糖尿病微血管并发症,通常会导致终末期肾病,对患者的生存构成威胁。然而,据我们所知,目前还没有治疗 DN 的有效策略。奥巴昆酮(OB)是一种从柑橘类植物中提取的小分子天然化合物,具有多种药理作用;然而,OB 对 DN 的影响仍有待全面阐明。因此,本研究旨在探索 OB 对 DN 的影响和潜在机制。在本研究中,通过对 HK-2 细胞进行高糖(HG)处理,在体外建立了 DN 模型;通过对 Sprague-Dawley 大鼠进行 HG 和高脂饮食以及腹腔注射链脲佐菌素,在体内建立了 DN 模型。随后,使用细胞计数试剂盒-8 法评估了细胞活力,并使用生化试剂盒、免疫荧光和 Western 印迹法测定了铁蛋白沉积相关标记物的水平。利用 Western 印迹、共免疫沉淀和逆转录定量 PCR 分析了核因子红细胞 2 相关因子 2(Nrf2)信号通路的激活和稳态。此外,还研究了大鼠肾功能参数的变化和肾脏病理损伤的严重程度。体外实验表明,OB 能显著提高细胞活力并抑制铁变态反应,表现为谷胱甘肽过氧化物酶 4 和 SLC7A11 表达增加,丙二醛、亚铁离子和活性氧水平降低(P<0.05)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Obacunone inhibits ferroptosis through regulation of Nrf2 homeostasis to treat diabetic nephropathy.

Diabetic nephropathy (DN), a prevalent and severe microvascular complication of diabetes, often leads to end‑stage renal disease and poses a threat to patient survival. However, to the best of our knowledge, there are currently no effective strategies available for the treatment of DN. Obacunone (OB), a small‑molecule natural compound derived from Citrus plants, exhibits various pharmacological effects; however, the impact of OB on DN remains to be fully elucidated. Therefore, the present study aimed to explore the effects and potential mechanisms of OB in DN. In the current study, DN models were created in vitro by treating HK‑2 cells with high‑glucose (HG) levels, and in vivo by administering a HG and high‑fat diet along with intraperitoneal injections of streptozotocin to Sprague‑Dawley rats. Subsequently, cell viability was evaluated using the Cell Counting Kit‑8 assay, while ferroptosis‑related marker levels were determined using biochemical kits, immunofluorescence and western blotting. Activation and homeostasis of the nuclear factor erythroid 2‑related factor 2 (Nrf2) signaling pathway were analyzed using western blotting, co‑immunoprecipitation and reverse transcription‑quantitative PCR. In addition, alterations in renal function parameters and the severity of renal pathological injury in rats were examined. The in vitro experiments demonstrated that OB significantly promoted cell viability and inhibited ferroptosis, as evidenced by increased glutathione peroxidase 4 and SLC7A11 expression, and decreased levels of malondialdehyde, ferrous ion and reactive oxygen species (P<0.05). Additionally, OB activated the Nrf2 signaling pathway, blocked the interaction between Nrf2 and Kelch‑like ECH‑associated protein 1, and suppressed Nrf2 ubiquitination and degradation (P<0.05). In vivo, OB administration improved renal function parameters, including serum creatinine and blood urea nitrogen levels (P<0.05), and reduced renal pathological injury, in comparison with the DN group. The results of the present study indicated that OB, a natural small molecule, exhibited significant anti‑DN effects, possibly through the regulation of Nrf2 homeostasis to inhibit ferroptosis. Overall, this study provides new evidence for OB as a potential clinical treatment for DN.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Molecular medicine reports
Molecular medicine reports 医学-病理学
CiteScore
7.60
自引率
0.00%
发文量
321
审稿时长
1.5 months
期刊介绍: Molecular Medicine Reports is a monthly, peer-reviewed journal available in print and online, that includes studies devoted to molecular medicine, underscoring aspects including pharmacology, pathology, genetics, neurosciences, infectious diseases, molecular cardiology and molecular surgery. In vitro and in vivo studies of experimental model systems pertaining to the mechanisms of a variety of diseases offer researchers the necessary tools and knowledge with which to aid the diagnosis and treatment of human diseases.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信