通过 siRNA 转染敲除 DLK1 和 NCoR1 对子宫内膜癌增殖影响的调查研究:揭示 notch 相互作用。

IF 2.8 4区 医学 Q2 ONCOLOGY
Swathi Chandran Manimegalai, Sathiya Priya Krishnamoorthy, Vignesh Kalimuthu, Ramani Devi Thirunavukarasu, Sureka Chandrabose, Kadalmani Balamuthu
{"title":"通过 siRNA 转染敲除 DLK1 和 NCoR1 对子宫内膜癌增殖影响的调查研究:揭示 notch 相互作用。","authors":"Swathi Chandran Manimegalai, Sathiya Priya Krishnamoorthy, Vignesh Kalimuthu, Ramani Devi Thirunavukarasu, Sureka Chandrabose, Kadalmani Balamuthu","doi":"10.1007/s12032-025-02676-7","DOIUrl":null,"url":null,"abstract":"<p><p>Endometrial cancer is the most common gynecological malignancy. Despite advances in treatment, many patients experience disease recurrence or metastasis. This study investigates the impact of siRNA-mediated gene knockdown of NCoR1 and DLK1 genes in the proliferation of endometrial cancer cell lines Ishikawa and AN3CA and normal HEK 293 cells. Cellular growth and survival before and after the treatment of predesigned siRNAs in the endometrial cancer cell lines were evidenced using fluorescent stains. The mRNA expression of BID, BAX, BCL2, Caspases 3, 8, and 9 GPR78, EGFR, VEGF, NCoR1, DLK1 and ARID1A was analyzed in the untreated HEK 293, Ishikawa, and AN3CA cell lines to substantiate the oncogenic property of Ishikawa and AN3CA cell lines. Then, to evidence the successful transfection of NCoR1 and DLK1 gene in endometrial cancer cells, the mRNA and protein expression of targeted genes before and after being transfected were also validated. As a result, the mRNA expression significantly increased in BID, BAX, BCL2, GPR78, EGFR and VEGF. On the other hand, Caspases 3, 8, and 9 were down-regulated in Ishikawa and AN3CA compared to the control cell line (HEK 293). The mRNA and protein expression of NCoR1 and DLK1 in siRNA-mediated transfection supported the reduced proliferation in endometrial cancer cells by interfering with certain pathways like Notch, MAPK, SWI/SNF, and NF-κB, which have crucial roles in the grade of receptor to the histone remodeling. With these findings, the study recommends exploring the possible role and interactions of NCoR1 and DLK1, signaling pathways that favor the progression of endometrial cancer.</p>","PeriodicalId":18433,"journal":{"name":"Medical Oncology","volume":"42 4","pages":"124"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An investigative study on the impact of DLK1 and NCoR1 knockdown by siRNA transfection on endometrial cancer proliferation: unveiling notch interactions.\",\"authors\":\"Swathi Chandran Manimegalai, Sathiya Priya Krishnamoorthy, Vignesh Kalimuthu, Ramani Devi Thirunavukarasu, Sureka Chandrabose, Kadalmani Balamuthu\",\"doi\":\"10.1007/s12032-025-02676-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Endometrial cancer is the most common gynecological malignancy. Despite advances in treatment, many patients experience disease recurrence or metastasis. This study investigates the impact of siRNA-mediated gene knockdown of NCoR1 and DLK1 genes in the proliferation of endometrial cancer cell lines Ishikawa and AN3CA and normal HEK 293 cells. Cellular growth and survival before and after the treatment of predesigned siRNAs in the endometrial cancer cell lines were evidenced using fluorescent stains. The mRNA expression of BID, BAX, BCL2, Caspases 3, 8, and 9 GPR78, EGFR, VEGF, NCoR1, DLK1 and ARID1A was analyzed in the untreated HEK 293, Ishikawa, and AN3CA cell lines to substantiate the oncogenic property of Ishikawa and AN3CA cell lines. Then, to evidence the successful transfection of NCoR1 and DLK1 gene in endometrial cancer cells, the mRNA and protein expression of targeted genes before and after being transfected were also validated. As a result, the mRNA expression significantly increased in BID, BAX, BCL2, GPR78, EGFR and VEGF. On the other hand, Caspases 3, 8, and 9 were down-regulated in Ishikawa and AN3CA compared to the control cell line (HEK 293). The mRNA and protein expression of NCoR1 and DLK1 in siRNA-mediated transfection supported the reduced proliferation in endometrial cancer cells by interfering with certain pathways like Notch, MAPK, SWI/SNF, and NF-κB, which have crucial roles in the grade of receptor to the histone remodeling. With these findings, the study recommends exploring the possible role and interactions of NCoR1 and DLK1, signaling pathways that favor the progression of endometrial cancer.</p>\",\"PeriodicalId\":18433,\"journal\":{\"name\":\"Medical Oncology\",\"volume\":\"42 4\",\"pages\":\"124\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Medical Oncology\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1007/s12032-025-02676-7\",\"RegionNum\":4,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ONCOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Medical Oncology","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1007/s12032-025-02676-7","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ONCOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
An investigative study on the impact of DLK1 and NCoR1 knockdown by siRNA transfection on endometrial cancer proliferation: unveiling notch interactions.

Endometrial cancer is the most common gynecological malignancy. Despite advances in treatment, many patients experience disease recurrence or metastasis. This study investigates the impact of siRNA-mediated gene knockdown of NCoR1 and DLK1 genes in the proliferation of endometrial cancer cell lines Ishikawa and AN3CA and normal HEK 293 cells. Cellular growth and survival before and after the treatment of predesigned siRNAs in the endometrial cancer cell lines were evidenced using fluorescent stains. The mRNA expression of BID, BAX, BCL2, Caspases 3, 8, and 9 GPR78, EGFR, VEGF, NCoR1, DLK1 and ARID1A was analyzed in the untreated HEK 293, Ishikawa, and AN3CA cell lines to substantiate the oncogenic property of Ishikawa and AN3CA cell lines. Then, to evidence the successful transfection of NCoR1 and DLK1 gene in endometrial cancer cells, the mRNA and protein expression of targeted genes before and after being transfected were also validated. As a result, the mRNA expression significantly increased in BID, BAX, BCL2, GPR78, EGFR and VEGF. On the other hand, Caspases 3, 8, and 9 were down-regulated in Ishikawa and AN3CA compared to the control cell line (HEK 293). The mRNA and protein expression of NCoR1 and DLK1 in siRNA-mediated transfection supported the reduced proliferation in endometrial cancer cells by interfering with certain pathways like Notch, MAPK, SWI/SNF, and NF-κB, which have crucial roles in the grade of receptor to the histone remodeling. With these findings, the study recommends exploring the possible role and interactions of NCoR1 and DLK1, signaling pathways that favor the progression of endometrial cancer.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Medical Oncology
Medical Oncology 医学-肿瘤学
CiteScore
4.20
自引率
2.90%
发文量
259
审稿时长
1.4 months
期刊介绍: Medical Oncology (MO) communicates the results of clinical and experimental research in oncology and hematology, particularly experimental therapeutics within the fields of immunotherapy and chemotherapy. It also provides state-of-the-art reviews on clinical and experimental therapies. Topics covered include immunobiology, pathogenesis, and treatment of malignant tumors.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信