CB1 和 CB2 受体可不同程度地调节母体免疫激活和围产期大麻素暴露对认知的影响。

IF 2.6 3区 心理学 Q2 BEHAVIORAL SCIENCES
Han-Ting Chen , Ken Mackie
{"title":"CB1 和 CB2 受体可不同程度地调节母体免疫激活和围产期大麻素暴露对认知的影响。","authors":"Han-Ting Chen ,&nbsp;Ken Mackie","doi":"10.1016/j.bbr.2025.115543","DOIUrl":null,"url":null,"abstract":"<div><div>Maternal immune activation (MIA) commonly arises in response to an infection during pregnancy. MIA elevates cytokine levels, triggering an inflammatory cascade, which may be detrimental to the developing nervous system. Similarly, cannabis use and exposure of the fetus to cannabinoids during pregnancy (PCE) may elicit neuroinflammation and lead to detrimental behavioral outcomes. This is particularly concerning as there has been a notable rise in cannabis use during pregnancy. This study endeavors to examine the interaction between MIA and PCE and elucidate the role of CB1 and CB2 receptors in MIA and PCE outcomes. To this end, we compared the impact of MIA, PCE and MIA+PCE in wildtype, CB1, and CB2 cannabinoid receptor knockout mice of both sexes. PCE was modeled by daily 3 mg/kg THC administration from gestational day 5 (GD5) to postnatal day 10. MIA was modeled by intravenous Poly (I:C) injection at GD16.5. Subsequently, we assessed emotional and cognitive behaviors of adult offspring. Adult male offspring of dams exposed to PCE or MIA were impaired in novel object recognition and the delayed alternation working memory tasks. Interestingly, these behavioral impairments were absent when MIA and PCE were combined. Cannabinoid receptor knockout studies found that CB1 receptors mediated behavioral deficits after PCE. In contrast CB2 receptors were necessary for full expression of MIA-induced behavioral impairments. Although females showed more modest behavioral changes after MIA or PCE, CB1 receptors were required for the PCE deficit and CB2 receptors were required for the MIA deficit also in females. Notably, lack of CB2 receptors in males prevented the “protection” following combined MIA + PCE, while CB1 knockout mice remained protected. Taken together, these results suggest a complex interplay between PCE, MIA and CB1 and CB2 cannabinoid receptors.</div></div>","PeriodicalId":8823,"journal":{"name":"Behavioural Brain Research","volume":"485 ","pages":"Article 115543"},"PeriodicalIF":2.6000,"publicationDate":"2025-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"CB1 and CB2 receptors differentially modulate the cognitive impact of maternal immune activation and perinatal cannabinoid exposure\",\"authors\":\"Han-Ting Chen ,&nbsp;Ken Mackie\",\"doi\":\"10.1016/j.bbr.2025.115543\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Maternal immune activation (MIA) commonly arises in response to an infection during pregnancy. MIA elevates cytokine levels, triggering an inflammatory cascade, which may be detrimental to the developing nervous system. Similarly, cannabis use and exposure of the fetus to cannabinoids during pregnancy (PCE) may elicit neuroinflammation and lead to detrimental behavioral outcomes. This is particularly concerning as there has been a notable rise in cannabis use during pregnancy. This study endeavors to examine the interaction between MIA and PCE and elucidate the role of CB1 and CB2 receptors in MIA and PCE outcomes. To this end, we compared the impact of MIA, PCE and MIA+PCE in wildtype, CB1, and CB2 cannabinoid receptor knockout mice of both sexes. PCE was modeled by daily 3 mg/kg THC administration from gestational day 5 (GD5) to postnatal day 10. MIA was modeled by intravenous Poly (I:C) injection at GD16.5. Subsequently, we assessed emotional and cognitive behaviors of adult offspring. Adult male offspring of dams exposed to PCE or MIA were impaired in novel object recognition and the delayed alternation working memory tasks. Interestingly, these behavioral impairments were absent when MIA and PCE were combined. Cannabinoid receptor knockout studies found that CB1 receptors mediated behavioral deficits after PCE. In contrast CB2 receptors were necessary for full expression of MIA-induced behavioral impairments. Although females showed more modest behavioral changes after MIA or PCE, CB1 receptors were required for the PCE deficit and CB2 receptors were required for the MIA deficit also in females. Notably, lack of CB2 receptors in males prevented the “protection” following combined MIA + PCE, while CB1 knockout mice remained protected. Taken together, these results suggest a complex interplay between PCE, MIA and CB1 and CB2 cannabinoid receptors.</div></div>\",\"PeriodicalId\":8823,\"journal\":{\"name\":\"Behavioural Brain Research\",\"volume\":\"485 \",\"pages\":\"Article 115543\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Behavioural Brain Research\",\"FirstCategoryId\":\"102\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0166432825001299\",\"RegionNum\":3,\"RegionCategory\":\"心理学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BEHAVIORAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Behavioural Brain Research","FirstCategoryId":"102","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0166432825001299","RegionNum":3,"RegionCategory":"心理学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BEHAVIORAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
CB1 and CB2 receptors differentially modulate the cognitive impact of maternal immune activation and perinatal cannabinoid exposure
Maternal immune activation (MIA) commonly arises in response to an infection during pregnancy. MIA elevates cytokine levels, triggering an inflammatory cascade, which may be detrimental to the developing nervous system. Similarly, cannabis use and exposure of the fetus to cannabinoids during pregnancy (PCE) may elicit neuroinflammation and lead to detrimental behavioral outcomes. This is particularly concerning as there has been a notable rise in cannabis use during pregnancy. This study endeavors to examine the interaction between MIA and PCE and elucidate the role of CB1 and CB2 receptors in MIA and PCE outcomes. To this end, we compared the impact of MIA, PCE and MIA+PCE in wildtype, CB1, and CB2 cannabinoid receptor knockout mice of both sexes. PCE was modeled by daily 3 mg/kg THC administration from gestational day 5 (GD5) to postnatal day 10. MIA was modeled by intravenous Poly (I:C) injection at GD16.5. Subsequently, we assessed emotional and cognitive behaviors of adult offspring. Adult male offspring of dams exposed to PCE or MIA were impaired in novel object recognition and the delayed alternation working memory tasks. Interestingly, these behavioral impairments were absent when MIA and PCE were combined. Cannabinoid receptor knockout studies found that CB1 receptors mediated behavioral deficits after PCE. In contrast CB2 receptors were necessary for full expression of MIA-induced behavioral impairments. Although females showed more modest behavioral changes after MIA or PCE, CB1 receptors were required for the PCE deficit and CB2 receptors were required for the MIA deficit also in females. Notably, lack of CB2 receptors in males prevented the “protection” following combined MIA + PCE, while CB1 knockout mice remained protected. Taken together, these results suggest a complex interplay between PCE, MIA and CB1 and CB2 cannabinoid receptors.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Behavioural Brain Research
Behavioural Brain Research 医学-行为科学
CiteScore
5.60
自引率
0.00%
发文量
383
审稿时长
61 days
期刊介绍: Behavioural Brain Research is an international, interdisciplinary journal dedicated to the publication of articles in the field of behavioural neuroscience, broadly defined. Contributions from the entire range of disciplines that comprise the neurosciences, behavioural sciences or cognitive sciences are appropriate, as long as the goal is to delineate the neural mechanisms underlying behaviour. Thus, studies may range from neurophysiological, neuroanatomical, neurochemical or neuropharmacological analysis of brain-behaviour relations, including the use of molecular genetic or behavioural genetic approaches, to studies that involve the use of brain imaging techniques, to neuroethological studies. Reports of original research, of major methodological advances, or of novel conceptual approaches are all encouraged. The journal will also consider critical reviews on selected topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信