{"title":"Resolvin D1通过BDNF/TrkB信号通路抑制小胶质细胞的激活,从而加速神经炎症的消退。","authors":"Cunju Bo, Xiaoming Liu, Yongjian Liu, Lingjun Xu, Qiaodong Huang","doi":"10.1186/s40001-025-02424-7","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>Neuropathic pain is characterized by hyperalgesia, allodynia, and inflammation and it is often resistant to treatment. The formyl peptide receptor 2 (ALX/FPR2), a G-protein-coupled receptor, has been implicated in resolving inflammation, making its agonist, Resolvin D1 (RvD1), a potential therapeutic agent. Previous studies suggest that RvD1 alleviates neuropathic pain via anti-inflammatory effects, but its mechanisms remain unclear, particularly in relation to microglial activation and the brain-derived neurotrophic factor (BDNF)/TrkB signaling pathway.</p><p><strong>Objective: </strong>To investigate the analgesic effects of RvD1 in a spared nerve injury (SNI) model of neuropathic pain and explore its mechanisms through the regulation of neuroinflammation and the BDNF/TrkB signaling pathway.</p><p><strong>Methods: </strong>SNI mice received intrathecal RvD1 at varying doses (10-40 ng) to determine its efficacy in reducing mechanical allodynia and thermal sensitivity. The anti-inflammatory effects of RvD1 were assessed using ELISA, immunofluorescence, and western blotting to measure the expression of pro-inflammatory cytokines and BDNF. The involvement of ALX/FPR2 and TrkB receptors was further examined using antagonists Boc2 and K252a.</p><p><strong>Results: </strong>RvD1 significantly reduced mechanical and thermal allodynia in SNI mice in a dose-dependent manner. RvD1 also decreased microglial activation and expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and BDNF in both in vivo and in vitro models. These effects were reversed by Boc2 and K252a, confirming that the analgesic actions of RvD1 are mediated via the ALX/FPR2 receptor and inhibition of BDNF/TrkB signaling.</p><p><strong>Conclusion: </strong>RvD1 alleviates neuropathic pain by reducing neuroinflammation through the ALX/FPR2 receptor and suppressing BDNF/TrkB signaling. These findings suggest RvD1 as a promising therapeutic agent for neuropathic pain management.</p>","PeriodicalId":11949,"journal":{"name":"European Journal of Medical Research","volume":"30 1","pages":"189"},"PeriodicalIF":2.8000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924792/pdf/","citationCount":"0","resultStr":"{\"title\":\"Resolvin D1 accelerates resolution of neuroinflammation by inhibiting microglia activation through the BDNF/TrkB signaling pathway.\",\"authors\":\"Cunju Bo, Xiaoming Liu, Yongjian Liu, Lingjun Xu, Qiaodong Huang\",\"doi\":\"10.1186/s40001-025-02424-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>Neuropathic pain is characterized by hyperalgesia, allodynia, and inflammation and it is often resistant to treatment. The formyl peptide receptor 2 (ALX/FPR2), a G-protein-coupled receptor, has been implicated in resolving inflammation, making its agonist, Resolvin D1 (RvD1), a potential therapeutic agent. Previous studies suggest that RvD1 alleviates neuropathic pain via anti-inflammatory effects, but its mechanisms remain unclear, particularly in relation to microglial activation and the brain-derived neurotrophic factor (BDNF)/TrkB signaling pathway.</p><p><strong>Objective: </strong>To investigate the analgesic effects of RvD1 in a spared nerve injury (SNI) model of neuropathic pain and explore its mechanisms through the regulation of neuroinflammation and the BDNF/TrkB signaling pathway.</p><p><strong>Methods: </strong>SNI mice received intrathecal RvD1 at varying doses (10-40 ng) to determine its efficacy in reducing mechanical allodynia and thermal sensitivity. The anti-inflammatory effects of RvD1 were assessed using ELISA, immunofluorescence, and western blotting to measure the expression of pro-inflammatory cytokines and BDNF. The involvement of ALX/FPR2 and TrkB receptors was further examined using antagonists Boc2 and K252a.</p><p><strong>Results: </strong>RvD1 significantly reduced mechanical and thermal allodynia in SNI mice in a dose-dependent manner. RvD1 also decreased microglial activation and expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and BDNF in both in vivo and in vitro models. These effects were reversed by Boc2 and K252a, confirming that the analgesic actions of RvD1 are mediated via the ALX/FPR2 receptor and inhibition of BDNF/TrkB signaling.</p><p><strong>Conclusion: </strong>RvD1 alleviates neuropathic pain by reducing neuroinflammation through the ALX/FPR2 receptor and suppressing BDNF/TrkB signaling. These findings suggest RvD1 as a promising therapeutic agent for neuropathic pain management.</p>\",\"PeriodicalId\":11949,\"journal\":{\"name\":\"European Journal of Medical Research\",\"volume\":\"30 1\",\"pages\":\"189\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924792/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European Journal of Medical Research\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1186/s40001-025-02424-7\",\"RegionNum\":3,\"RegionCategory\":\"医学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MEDICINE, RESEARCH & EXPERIMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European Journal of Medical Research","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1186/s40001-025-02424-7","RegionNum":3,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MEDICINE, RESEARCH & EXPERIMENTAL","Score":null,"Total":0}
Resolvin D1 accelerates resolution of neuroinflammation by inhibiting microglia activation through the BDNF/TrkB signaling pathway.
Background: Neuropathic pain is characterized by hyperalgesia, allodynia, and inflammation and it is often resistant to treatment. The formyl peptide receptor 2 (ALX/FPR2), a G-protein-coupled receptor, has been implicated in resolving inflammation, making its agonist, Resolvin D1 (RvD1), a potential therapeutic agent. Previous studies suggest that RvD1 alleviates neuropathic pain via anti-inflammatory effects, but its mechanisms remain unclear, particularly in relation to microglial activation and the brain-derived neurotrophic factor (BDNF)/TrkB signaling pathway.
Objective: To investigate the analgesic effects of RvD1 in a spared nerve injury (SNI) model of neuropathic pain and explore its mechanisms through the regulation of neuroinflammation and the BDNF/TrkB signaling pathway.
Methods: SNI mice received intrathecal RvD1 at varying doses (10-40 ng) to determine its efficacy in reducing mechanical allodynia and thermal sensitivity. The anti-inflammatory effects of RvD1 were assessed using ELISA, immunofluorescence, and western blotting to measure the expression of pro-inflammatory cytokines and BDNF. The involvement of ALX/FPR2 and TrkB receptors was further examined using antagonists Boc2 and K252a.
Results: RvD1 significantly reduced mechanical and thermal allodynia in SNI mice in a dose-dependent manner. RvD1 also decreased microglial activation and expression of pro-inflammatory cytokines (TNF-α, IL-1β, IL-6) and BDNF in both in vivo and in vitro models. These effects were reversed by Boc2 and K252a, confirming that the analgesic actions of RvD1 are mediated via the ALX/FPR2 receptor and inhibition of BDNF/TrkB signaling.
Conclusion: RvD1 alleviates neuropathic pain by reducing neuroinflammation through the ALX/FPR2 receptor and suppressing BDNF/TrkB signaling. These findings suggest RvD1 as a promising therapeutic agent for neuropathic pain management.
期刊介绍:
European Journal of Medical Research publishes translational and clinical research of international interest across all medical disciplines, enabling clinicians and other researchers to learn about developments and innovations within these disciplines and across the boundaries between disciplines. The journal publishes high quality research and reviews and aims to ensure that the results of all well-conducted research are published, regardless of their outcome.