实现柔性Mg3Sb2- xBix薄膜热电器件的高性能。

IF 14.1 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Boxuan Hu, Xiao-Lei Shi, Tianyi Cao, Min Zhang, Wenyi Chen, Siqi Liu, Meng Li, Weidi Liu, Zhi-Gang Chen
{"title":"实现柔性Mg3Sb2- xBix薄膜热电器件的高性能。","authors":"Boxuan Hu,&nbsp;Xiao-Lei Shi,&nbsp;Tianyi Cao,&nbsp;Min Zhang,&nbsp;Wenyi Chen,&nbsp;Siqi Liu,&nbsp;Meng Li,&nbsp;Weidi Liu,&nbsp;Zhi-Gang Chen","doi":"10.1002/advs.202502683","DOIUrl":null,"url":null,"abstract":"<p>As advancements in Mg-based thermoelectric materials continue, increasing attention is directed toward enhancing the thermoelectric performance of Mg<sub>3</sub>Sb<sub>2</sub> and its integration into thermoelectric devices. However, research on Mg<sub>3</sub>Sb<sub>2</sub> thin films and their application in flexible devices remains limited, leaving ample room for improvements in fabrication techniques and thermoelectric properties. To address these gaps, this study employs magnetron sputtering combined with ex-situ annealing to dope Bi into Mg<sub>3</sub>Sb<sub>2</sub> thin films, partially substituting Sb. This approach enhances the near-room-temperature performance and plasticity, yielding high-performance Mg<sub>3</sub>Sb<sub>2−</sub><i><sub>x</sub></i>Bi<i><sub>x</sub></i> thermoelectric thin films. The films achieve a power factor of 3.77 µW cm<sup>−1</sup> K<sup>−2</sup> at 500 K, the highest value reported for p-type Mg<sub>3</sub>Sb<sub>2</sub> thin films to date. Comprehensive characterization demonstrates precise thickness control, strong adhesion to various substrates, and excellent flexibility, with performance degradation of less than 12% after 1000 bending cycles at a radius of 5 mm. Additionally, a flexible thermoelectric device is constructed using p-type Mg<sub>3</sub>Sb<sub>1.1</sub>Bi<sub>0.9</sub> and n-type Ag<sub>2</sub>Se legs, achieving an output power of 9.96 nW and a power density of 77.38 µW cm<sup>−2</sup> under a temperature difference of 10 K. These findings underscore the potential of these devices for practical applications in wearable electronics.</p>","PeriodicalId":117,"journal":{"name":"Advanced Science","volume":"12 19","pages":""},"PeriodicalIF":14.1000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202502683","citationCount":"0","resultStr":"{\"title\":\"Realizing High Performance in Flexible Mg3Sb2−xBix Thin-Film Thermoelectrics\",\"authors\":\"Boxuan Hu,&nbsp;Xiao-Lei Shi,&nbsp;Tianyi Cao,&nbsp;Min Zhang,&nbsp;Wenyi Chen,&nbsp;Siqi Liu,&nbsp;Meng Li,&nbsp;Weidi Liu,&nbsp;Zhi-Gang Chen\",\"doi\":\"10.1002/advs.202502683\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As advancements in Mg-based thermoelectric materials continue, increasing attention is directed toward enhancing the thermoelectric performance of Mg<sub>3</sub>Sb<sub>2</sub> and its integration into thermoelectric devices. However, research on Mg<sub>3</sub>Sb<sub>2</sub> thin films and their application in flexible devices remains limited, leaving ample room for improvements in fabrication techniques and thermoelectric properties. To address these gaps, this study employs magnetron sputtering combined with ex-situ annealing to dope Bi into Mg<sub>3</sub>Sb<sub>2</sub> thin films, partially substituting Sb. This approach enhances the near-room-temperature performance and plasticity, yielding high-performance Mg<sub>3</sub>Sb<sub>2−</sub><i><sub>x</sub></i>Bi<i><sub>x</sub></i> thermoelectric thin films. The films achieve a power factor of 3.77 µW cm<sup>−1</sup> K<sup>−2</sup> at 500 K, the highest value reported for p-type Mg<sub>3</sub>Sb<sub>2</sub> thin films to date. Comprehensive characterization demonstrates precise thickness control, strong adhesion to various substrates, and excellent flexibility, with performance degradation of less than 12% after 1000 bending cycles at a radius of 5 mm. Additionally, a flexible thermoelectric device is constructed using p-type Mg<sub>3</sub>Sb<sub>1.1</sub>Bi<sub>0.9</sub> and n-type Ag<sub>2</sub>Se legs, achieving an output power of 9.96 nW and a power density of 77.38 µW cm<sup>−2</sup> under a temperature difference of 10 K. These findings underscore the potential of these devices for practical applications in wearable electronics.</p>\",\"PeriodicalId\":117,\"journal\":{\"name\":\"Advanced Science\",\"volume\":\"12 19\",\"pages\":\"\"},\"PeriodicalIF\":14.1000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/advs.202502683\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advanced Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/advs.202502683\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advanced Science","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/advs.202502683","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

随着镁基热电材料的不断进步,人们越来越关注如何提高Mg3Sb2的热电性能及其在热电器件中的集成。然而,对Mg3Sb2薄膜及其在柔性器件中的应用的研究仍然有限,在制造技术和热电性能方面有很大的改进空间。为了解决这些问题,本研究采用磁控溅射结合非原位退火的方法将Bi掺杂到Mg3Sb2薄膜中,部分取代Sb。这种方法提高了Mg3Sb2- xBix薄膜的近室温性能和塑性,获得了高性能的Mg3Sb2- xBix热电薄膜。在500 K时,薄膜的功率因数达到3.77 μ W cm-1 K-2,这是迄今为止报道的p型Mg3Sb2薄膜的最高值。综合表征显示了精确的厚度控制,对各种基材的强附着力和出色的灵活性,在半径为5mm的1000次弯曲循环后性能下降小于12%。此外,采用p型mg3sb1.1 . 1bi0.9和n型Ag2Se支腿构建了柔性热电器件,在温差为10 K的条件下,输出功率为9.96 nW,功率密度为77.38µW cm-2。这些发现强调了这些设备在可穿戴电子产品中的实际应用潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Realizing High Performance in Flexible Mg3Sb2−xBix Thin-Film Thermoelectrics

Realizing High Performance in Flexible Mg3Sb2−xBix Thin-Film Thermoelectrics

As advancements in Mg-based thermoelectric materials continue, increasing attention is directed toward enhancing the thermoelectric performance of Mg3Sb2 and its integration into thermoelectric devices. However, research on Mg3Sb2 thin films and their application in flexible devices remains limited, leaving ample room for improvements in fabrication techniques and thermoelectric properties. To address these gaps, this study employs magnetron sputtering combined with ex-situ annealing to dope Bi into Mg3Sb2 thin films, partially substituting Sb. This approach enhances the near-room-temperature performance and plasticity, yielding high-performance Mg3Sb2−xBix thermoelectric thin films. The films achieve a power factor of 3.77 µW cm−1 K−2 at 500 K, the highest value reported for p-type Mg3Sb2 thin films to date. Comprehensive characterization demonstrates precise thickness control, strong adhesion to various substrates, and excellent flexibility, with performance degradation of less than 12% after 1000 bending cycles at a radius of 5 mm. Additionally, a flexible thermoelectric device is constructed using p-type Mg3Sb1.1Bi0.9 and n-type Ag2Se legs, achieving an output power of 9.96 nW and a power density of 77.38 µW cm−2 under a temperature difference of 10 K. These findings underscore the potential of these devices for practical applications in wearable electronics.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Advanced Science
Advanced Science CHEMISTRY, MULTIDISCIPLINARYNANOSCIENCE &-NANOSCIENCE & NANOTECHNOLOGY
CiteScore
18.90
自引率
2.60%
发文量
1602
审稿时长
1.9 months
期刊介绍: Advanced Science is a prestigious open access journal that focuses on interdisciplinary research in materials science, physics, chemistry, medical and life sciences, and engineering. The journal aims to promote cutting-edge research by employing a rigorous and impartial review process. It is committed to presenting research articles with the highest quality production standards, ensuring maximum accessibility of top scientific findings. With its vibrant and innovative publication platform, Advanced Science seeks to revolutionize the dissemination and organization of scientific knowledge.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信