Débora J. N. de Melo, Lucineide B. da Silva, Sharline F. M. Santos
{"title":"商用甘蔗糖蜜 PHB 的生物生产和结构表征","authors":"Débora J. N. de Melo, Lucineide B. da Silva, Sharline F. M. Santos","doi":"10.1007/s10924-025-03519-2","DOIUrl":null,"url":null,"abstract":"<div><p>World population growth associated with unbridled consumption have led to notable increases in the use of petroleum-based plastics. Biodegradable polymers produced from sustainable and low-cost raw materials have been emerging as a key solution. The objective of this work was to obtain a polymer of microbial origin from an alternative and renewable source. Bacterial Polyhydroxybutyrate (PHB-B) was produced by submerged culture of <i>Cupriavidus necator</i> using commercial sugarcane molasses (CSM) as a renewable substrate. A 2<sup>2</sup> factorial experimental design with three central point replications was conducted to identify the most favorable culture conditions. The 15 g.L<sup>−1</sup> concentration of reducing sugar (RS) obtained from the CSM was effective as a carbon source, yielding (under stirring at 180 rpm and 30 °C) a maximum production of 35.70% PHB-B, while presenting the same functional groups and crystal structure as commercial grade Polyhydroxybutyrate (PHB-C). The intensities obtained for the 2933 and 2975 cm<sup>−1</sup> bands, suggested that PHB-C presents higher crystallinity than PHB-B. <sup>1</sup>H and <sup>13</sup>C NMR confirmed the identity of the bacterial biopolymer as Polyhydroxybutyrate. The diffraction peaks were less intense for PHB-B, and the peaks at (021) and (101) coalesced into a single peak at (111). The peak shapes indicated that PHB-B presents smaller and/or less perfect crystals than PHB-C. Considering the observed structural differences, the rigidity and flexibility of the biopolymers may differ. Bacterial PHB was produced using a low-pollution route. This resulted in a product which potentially expands the range of environmentally friendly PHB applications.</p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 4","pages":"2072 - 2090"},"PeriodicalIF":4.7000,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Biological Production and Structural Characterization of PHB from Commercial Sugarcane Molasses\",\"authors\":\"Débora J. N. de Melo, Lucineide B. da Silva, Sharline F. M. Santos\",\"doi\":\"10.1007/s10924-025-03519-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>World population growth associated with unbridled consumption have led to notable increases in the use of petroleum-based plastics. Biodegradable polymers produced from sustainable and low-cost raw materials have been emerging as a key solution. The objective of this work was to obtain a polymer of microbial origin from an alternative and renewable source. Bacterial Polyhydroxybutyrate (PHB-B) was produced by submerged culture of <i>Cupriavidus necator</i> using commercial sugarcane molasses (CSM) as a renewable substrate. A 2<sup>2</sup> factorial experimental design with three central point replications was conducted to identify the most favorable culture conditions. The 15 g.L<sup>−1</sup> concentration of reducing sugar (RS) obtained from the CSM was effective as a carbon source, yielding (under stirring at 180 rpm and 30 °C) a maximum production of 35.70% PHB-B, while presenting the same functional groups and crystal structure as commercial grade Polyhydroxybutyrate (PHB-C). The intensities obtained for the 2933 and 2975 cm<sup>−1</sup> bands, suggested that PHB-C presents higher crystallinity than PHB-B. <sup>1</sup>H and <sup>13</sup>C NMR confirmed the identity of the bacterial biopolymer as Polyhydroxybutyrate. The diffraction peaks were less intense for PHB-B, and the peaks at (021) and (101) coalesced into a single peak at (111). The peak shapes indicated that PHB-B presents smaller and/or less perfect crystals than PHB-C. Considering the observed structural differences, the rigidity and flexibility of the biopolymers may differ. Bacterial PHB was produced using a low-pollution route. This resulted in a product which potentially expands the range of environmentally friendly PHB applications.</p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"33 4\",\"pages\":\"2072 - 2090\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-01-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-025-03519-2\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03519-2","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
Biological Production and Structural Characterization of PHB from Commercial Sugarcane Molasses
World population growth associated with unbridled consumption have led to notable increases in the use of petroleum-based plastics. Biodegradable polymers produced from sustainable and low-cost raw materials have been emerging as a key solution. The objective of this work was to obtain a polymer of microbial origin from an alternative and renewable source. Bacterial Polyhydroxybutyrate (PHB-B) was produced by submerged culture of Cupriavidus necator using commercial sugarcane molasses (CSM) as a renewable substrate. A 22 factorial experimental design with three central point replications was conducted to identify the most favorable culture conditions. The 15 g.L−1 concentration of reducing sugar (RS) obtained from the CSM was effective as a carbon source, yielding (under stirring at 180 rpm and 30 °C) a maximum production of 35.70% PHB-B, while presenting the same functional groups and crystal structure as commercial grade Polyhydroxybutyrate (PHB-C). The intensities obtained for the 2933 and 2975 cm−1 bands, suggested that PHB-C presents higher crystallinity than PHB-B. 1H and 13C NMR confirmed the identity of the bacterial biopolymer as Polyhydroxybutyrate. The diffraction peaks were less intense for PHB-B, and the peaks at (021) and (101) coalesced into a single peak at (111). The peak shapes indicated that PHB-B presents smaller and/or less perfect crystals than PHB-C. Considering the observed structural differences, the rigidity and flexibility of the biopolymers may differ. Bacterial PHB was produced using a low-pollution route. This resulted in a product which potentially expands the range of environmentally friendly PHB applications.
期刊介绍:
The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.