多羧基超支化聚甘油(HPG)改性单分散超顺磁聚甲基丙烯酸缩水甘油酯微球的合成及其染料吸附性能

IF 2.6 4区 化学 Q3 POLYMER SCIENCE
Hengbo Lei, Xiang Cao, Yuguo Tang
{"title":"多羧基超支化聚甘油(HPG)改性单分散超顺磁聚甲基丙烯酸缩水甘油酯微球的合成及其染料吸附性能","authors":"Hengbo Lei,&nbsp;Xiang Cao,&nbsp;Yuguo Tang","doi":"10.1007/s10965-025-04269-4","DOIUrl":null,"url":null,"abstract":"<div><p>Monodisperse superparamagnetic poly (glycidyl methacrylate) microspheres (PGMA-HPG-COOH) with carboxyl group were synthesized and applied to treatment of cationic dyes wastewater. The composite adsorbent not only has good adsorption selectivity for cationic dyes (e.g., methylene blue (MB) and rhodamine 6G (R6G)), but also has convenient magnetic separation characteristics. The optimal pH for the adsorption of methylene blue was determined as pH 7, which was associated with the surface charge of adsorbent. Due to its ultra-high hydrophilicity, PGMA-HPG-COOH demonstrated a remarkably rapid adsorption rate for MB and R6G, and the adsorption saturation level of 95% can be achieved within just 10 min. The adsorption data showed nice correlation with pseudo-second-order kinetic model and Langmuir isotherm. The theoretical maximum adsorption capacity of PGMA-HPG-COOH for MB and R6G can reach 238.1 mg/g and 227.27 mg/g, respectively. Futhermore, PGMA-HPG-COOH can be effectively regenerated using a binary HCl-ethanol solution, maintaining the adsorption efficiency of 91.7% after five cycles of recycling. These findings substantiate the promising potential of the PGMA-HPG-COOH adsorbent for application in water treatment processes.</p></div>","PeriodicalId":658,"journal":{"name":"Journal of Polymer Research","volume":"32 4","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Synthesis of multicarboxylic hyperbranched polyglycerol (HPG) modified monodisperse superparamagnetic poly (glycidyl methacrylate) microspheres for capable dye adsorption\",\"authors\":\"Hengbo Lei,&nbsp;Xiang Cao,&nbsp;Yuguo Tang\",\"doi\":\"10.1007/s10965-025-04269-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Monodisperse superparamagnetic poly (glycidyl methacrylate) microspheres (PGMA-HPG-COOH) with carboxyl group were synthesized and applied to treatment of cationic dyes wastewater. The composite adsorbent not only has good adsorption selectivity for cationic dyes (e.g., methylene blue (MB) and rhodamine 6G (R6G)), but also has convenient magnetic separation characteristics. The optimal pH for the adsorption of methylene blue was determined as pH 7, which was associated with the surface charge of adsorbent. Due to its ultra-high hydrophilicity, PGMA-HPG-COOH demonstrated a remarkably rapid adsorption rate for MB and R6G, and the adsorption saturation level of 95% can be achieved within just 10 min. The adsorption data showed nice correlation with pseudo-second-order kinetic model and Langmuir isotherm. The theoretical maximum adsorption capacity of PGMA-HPG-COOH for MB and R6G can reach 238.1 mg/g and 227.27 mg/g, respectively. Futhermore, PGMA-HPG-COOH can be effectively regenerated using a binary HCl-ethanol solution, maintaining the adsorption efficiency of 91.7% after five cycles of recycling. These findings substantiate the promising potential of the PGMA-HPG-COOH adsorbent for application in water treatment processes.</p></div>\",\"PeriodicalId\":658,\"journal\":{\"name\":\"Journal of Polymer Research\",\"volume\":\"32 4\",\"pages\":\"\"},\"PeriodicalIF\":2.6000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymer Research\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10965-025-04269-4\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"POLYMER SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymer Research","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1007/s10965-025-04269-4","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"POLYMER SCIENCE","Score":null,"Total":0}
引用次数: 0

摘要

合成了具有羧基的单分散超顺磁聚甲基丙烯酸缩水甘油酯微球(PGMA-HPG-COOH),并将其应用于阳离子染料废水的处理。该复合吸附剂不仅对阳离子染料(如亚甲基蓝(MB)和罗丹明6G (R6G))具有良好的吸附选择性,而且具有方便的磁分离特性。确定了吸附亚甲基蓝的最佳pH为pH 7,这与吸附剂的表面电荷量有关。由于其超高亲水性,PGMA-HPG-COOH对MB和R6G的吸附速度非常快,在10 min内即可达到95%的吸附饱和水平,吸附数据与拟二级动力学模型和Langmuir等温线具有良好的相关性。PGMA-HPG-COOH对MB和R6G的理论最大吸附量分别达到238.1 mg/g和227.27 mg/g。此外,PGMA-HPG-COOH可在二元盐酸-乙醇溶液中有效再生,循环5次后吸附效率保持在91.7%。这些发现证实了PGMA-HPG-COOH吸附剂在水处理过程中的应用前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Synthesis of multicarboxylic hyperbranched polyglycerol (HPG) modified monodisperse superparamagnetic poly (glycidyl methacrylate) microspheres for capable dye adsorption

Synthesis of multicarboxylic hyperbranched polyglycerol (HPG) modified monodisperse superparamagnetic poly (glycidyl methacrylate) microspheres for capable dye adsorption

Monodisperse superparamagnetic poly (glycidyl methacrylate) microspheres (PGMA-HPG-COOH) with carboxyl group were synthesized and applied to treatment of cationic dyes wastewater. The composite adsorbent not only has good adsorption selectivity for cationic dyes (e.g., methylene blue (MB) and rhodamine 6G (R6G)), but also has convenient magnetic separation characteristics. The optimal pH for the adsorption of methylene blue was determined as pH 7, which was associated with the surface charge of adsorbent. Due to its ultra-high hydrophilicity, PGMA-HPG-COOH demonstrated a remarkably rapid adsorption rate for MB and R6G, and the adsorption saturation level of 95% can be achieved within just 10 min. The adsorption data showed nice correlation with pseudo-second-order kinetic model and Langmuir isotherm. The theoretical maximum adsorption capacity of PGMA-HPG-COOH for MB and R6G can reach 238.1 mg/g and 227.27 mg/g, respectively. Futhermore, PGMA-HPG-COOH can be effectively regenerated using a binary HCl-ethanol solution, maintaining the adsorption efficiency of 91.7% after five cycles of recycling. These findings substantiate the promising potential of the PGMA-HPG-COOH adsorbent for application in water treatment processes.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymer Research
Journal of Polymer Research 化学-高分子科学
CiteScore
4.70
自引率
7.10%
发文量
472
审稿时长
3.6 months
期刊介绍: Journal of Polymer Research provides a forum for the prompt publication of articles concerning the fundamental and applied research of polymers. Its great feature lies in the diversity of content which it encompasses, drawing together results from all aspects of polymer science and technology. As polymer research is rapidly growing around the globe, the aim of this journal is to establish itself as a significant information tool not only for the international polymer researchers in academia but also for those working in industry. The scope of the journal covers a wide range of the highly interdisciplinary field of polymer science and technology, including: polymer synthesis; polymer reactions; polymerization kinetics; polymer physics; morphology; structure-property relationships; polymer analysis and characterization; physical and mechanical properties; electrical and optical properties; polymer processing and rheology; application of polymers; supramolecular science of polymers; polymer composites.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信