矩阵多项式的根函数及其在微分方程和亚纯矩阵函数中的应用

IF 0.8 Q2 MATHEMATICS
Muhamed Borogovac
{"title":"矩阵多项式的根函数及其在微分方程和亚纯矩阵函数中的应用","authors":"Muhamed Borogovac","doi":"10.1007/s43036-025-00432-2","DOIUrl":null,"url":null,"abstract":"<div><p>First, we present a method for obtaining a canonical set of root functions and Jordan chains of the invertible matrix polynomial <i>L</i>(<i>z</i>) through elementary transformations of the matrix <i>L</i>(<i>z</i>) alone. This method provides a new and simple approach to deriving a general solution of the system of ordinary linear differential equations <span>\\(L\\left( \\frac{d}{dt}\\right) u=0\\)</span>, where <i>u</i>(<i>t</i>) is <i>n</i>-dimensional unknown function. We illustrate the effectiveness of this method by applying it to solve a high-order linear system of ODEs. Second, given a matrix generalized Nevanlinna function <span>\\(Q\\in N_{\\kappa }^{n \\times n}\\)</span>, that satisfies certain conditions at <span>\\(\\infty \\)</span>, and a canonical set of root functions of <span>\\(\\hat{Q}(z):= -Q(z)^{-1}\\)</span>, we construct the corresponding Pontryagin space <span>\\((\\mathcal {K}, [.,.])\\)</span>, a self-adjoint operator <span>\\(A:\\mathcal {K}\\rightarrow \\mathcal {K}\\)</span>, and an operator <span>\\(\\Gamma : \\mathbb {C}^{n}\\rightarrow \\mathcal {K}\\)</span>, that represent the function <i>Q</i>(<i>z</i>) in a Krein–Langer type representation. We illustrate the application of main results with examples involving concrete matrix polynomials <i>L</i>(<i>z</i>) and their inverses, defined as <span>\\(Q(z):=\\hat{L}(z):= -L(z)^{-1}\\)</span>.</p></div>","PeriodicalId":44371,"journal":{"name":"Advances in Operator Theory","volume":"10 2","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43036-025-00432-2.pdf","citationCount":"0","resultStr":"{\"title\":\"An approach to root functions of matrix polynomials with applications in differential equations and meromorphic matrix functions\",\"authors\":\"Muhamed Borogovac\",\"doi\":\"10.1007/s43036-025-00432-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>First, we present a method for obtaining a canonical set of root functions and Jordan chains of the invertible matrix polynomial <i>L</i>(<i>z</i>) through elementary transformations of the matrix <i>L</i>(<i>z</i>) alone. This method provides a new and simple approach to deriving a general solution of the system of ordinary linear differential equations <span>\\\\(L\\\\left( \\\\frac{d}{dt}\\\\right) u=0\\\\)</span>, where <i>u</i>(<i>t</i>) is <i>n</i>-dimensional unknown function. We illustrate the effectiveness of this method by applying it to solve a high-order linear system of ODEs. Second, given a matrix generalized Nevanlinna function <span>\\\\(Q\\\\in N_{\\\\kappa }^{n \\\\times n}\\\\)</span>, that satisfies certain conditions at <span>\\\\(\\\\infty \\\\)</span>, and a canonical set of root functions of <span>\\\\(\\\\hat{Q}(z):= -Q(z)^{-1}\\\\)</span>, we construct the corresponding Pontryagin space <span>\\\\((\\\\mathcal {K}, [.,.])\\\\)</span>, a self-adjoint operator <span>\\\\(A:\\\\mathcal {K}\\\\rightarrow \\\\mathcal {K}\\\\)</span>, and an operator <span>\\\\(\\\\Gamma : \\\\mathbb {C}^{n}\\\\rightarrow \\\\mathcal {K}\\\\)</span>, that represent the function <i>Q</i>(<i>z</i>) in a Krein–Langer type representation. We illustrate the application of main results with examples involving concrete matrix polynomials <i>L</i>(<i>z</i>) and their inverses, defined as <span>\\\\(Q(z):=\\\\hat{L}(z):= -L(z)^{-1}\\\\)</span>.</p></div>\",\"PeriodicalId\":44371,\"journal\":{\"name\":\"Advances in Operator Theory\",\"volume\":\"10 2\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s43036-025-00432-2.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Operator Theory\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43036-025-00432-2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Operator Theory","FirstCategoryId":"1085","ListUrlMain":"https://link.springer.com/article/10.1007/s43036-025-00432-2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

首先,通过矩阵L(z)的初等变换,给出了可逆矩阵多项式L(z)的根函数和Jordan链的正则集的一种方法。该方法提供了一种新的、简单的方法来推导常线性微分方程组\(L\left( \frac{d}{dt}\right) u=0\)的通解,其中u(t)是n维未知函数。通过求解一个高阶线性ode系统,说明了该方法的有效性。其次,给定满足\(\infty \)的矩阵广义Nevanlinna函数\(Q\in N_{\kappa }^{n \times n}\)和\(\hat{Q}(z):= -Q(z)^{-1}\)的根函数的正则集,构造相应的Pontryagin空间\((\mathcal {K}, [.,.])\)、一个自伴随算子\(A:\mathcal {K}\rightarrow \mathcal {K}\)和一个算子\(\Gamma : \mathbb {C}^{n}\rightarrow \mathcal {K}\),用Krein-Langer型表示函数Q(z)。我们用具体矩阵多项式L(z)及其逆(定义为\(Q(z):=\hat{L}(z):= -L(z)^{-1}\))的例子来说明主要结果的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An approach to root functions of matrix polynomials with applications in differential equations and meromorphic matrix functions

First, we present a method for obtaining a canonical set of root functions and Jordan chains of the invertible matrix polynomial L(z) through elementary transformations of the matrix L(z) alone. This method provides a new and simple approach to deriving a general solution of the system of ordinary linear differential equations \(L\left( \frac{d}{dt}\right) u=0\), where u(t) is n-dimensional unknown function. We illustrate the effectiveness of this method by applying it to solve a high-order linear system of ODEs. Second, given a matrix generalized Nevanlinna function \(Q\in N_{\kappa }^{n \times n}\), that satisfies certain conditions at \(\infty \), and a canonical set of root functions of \(\hat{Q}(z):= -Q(z)^{-1}\), we construct the corresponding Pontryagin space \((\mathcal {K}, [.,.])\), a self-adjoint operator \(A:\mathcal {K}\rightarrow \mathcal {K}\), and an operator \(\Gamma : \mathbb {C}^{n}\rightarrow \mathcal {K}\), that represent the function Q(z) in a Krein–Langer type representation. We illustrate the application of main results with examples involving concrete matrix polynomials L(z) and their inverses, defined as \(Q(z):=\hat{L}(z):= -L(z)^{-1}\).

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.60
自引率
0.00%
发文量
55
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信