选择性激光烧结制备聚乳酸/硅酸钙复合支架及其生物活性诱导、降解和机械增强协同调控

IF 4.7 3区 工程技术 Q2 ENGINEERING, ENVIRONMENTAL
Dongying Li, Yanrong Zhou, Peng Chen, Changfeng Li, Jianfei Zhang, Zonghan Li, Zixiong Zhou, Mengqi Li, Yong Xu
{"title":"选择性激光烧结制备聚乳酸/硅酸钙复合支架及其生物活性诱导、降解和机械增强协同调控","authors":"Dongying Li,&nbsp;Yanrong Zhou,&nbsp;Peng Chen,&nbsp;Changfeng Li,&nbsp;Jianfei Zhang,&nbsp;Zonghan Li,&nbsp;Zixiong Zhou,&nbsp;Mengqi Li,&nbsp;Yong Xu","doi":"10.1007/s10924-025-03531-6","DOIUrl":null,"url":null,"abstract":"<div><p>Developing a biomimetic porous composite scaffold with mechanical properties tailored to meet the requirements of bone defect repair, enhanced bioactivity, and controlled biodegradability is of great significance for effective bone regeneration. In this work, calcium silicate (CS, CaSiO₃) was introduced into polylactic acid (PLA) as an addition. A scaffold model was then constructed using triply periodic minimal surfaces (TPMS), and a PLA/CS composite scaffold was fabricated using selective laser sintering (SLS) technology. Among them, when the CS content was 5wt%, the compressive strength and modulus of the composite scaffold were 4.8 MPa and 52.1 MPa, respectively, which were 104.2% and 43.9% higher than those of the PLA scaffold. The mechanical strengthening can be attributed to the particle reinforcement effect caused by the inherent high stiffness of CS. Additionally, the incorporation of CS accelerates the degradation of the scaffold while enhancing its bioactivity. The composite scaffold also demonstrated favorable cell compatibility in in vitro tests, supporting its potential for biological integration. In summary, the PLA/CS composite scaffold with coordinated regulation of multiple properties is expected to become a potential choice for bone defect repair. </p></div>","PeriodicalId":659,"journal":{"name":"Journal of Polymers and the Environment","volume":"33 4","pages":"1778 - 1791"},"PeriodicalIF":4.7000,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Polylactic Acid/Calcium Silicate Composite Scaffold Fabricated by Selective Laser Sintering with Coordinated Regulation of Bioactivity Induction, Degradation, and Mechanical Enhancement\",\"authors\":\"Dongying Li,&nbsp;Yanrong Zhou,&nbsp;Peng Chen,&nbsp;Changfeng Li,&nbsp;Jianfei Zhang,&nbsp;Zonghan Li,&nbsp;Zixiong Zhou,&nbsp;Mengqi Li,&nbsp;Yong Xu\",\"doi\":\"10.1007/s10924-025-03531-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Developing a biomimetic porous composite scaffold with mechanical properties tailored to meet the requirements of bone defect repair, enhanced bioactivity, and controlled biodegradability is of great significance for effective bone regeneration. In this work, calcium silicate (CS, CaSiO₃) was introduced into polylactic acid (PLA) as an addition. A scaffold model was then constructed using triply periodic minimal surfaces (TPMS), and a PLA/CS composite scaffold was fabricated using selective laser sintering (SLS) technology. Among them, when the CS content was 5wt%, the compressive strength and modulus of the composite scaffold were 4.8 MPa and 52.1 MPa, respectively, which were 104.2% and 43.9% higher than those of the PLA scaffold. The mechanical strengthening can be attributed to the particle reinforcement effect caused by the inherent high stiffness of CS. Additionally, the incorporation of CS accelerates the degradation of the scaffold while enhancing its bioactivity. The composite scaffold also demonstrated favorable cell compatibility in in vitro tests, supporting its potential for biological integration. In summary, the PLA/CS composite scaffold with coordinated regulation of multiple properties is expected to become a potential choice for bone defect repair. </p></div>\",\"PeriodicalId\":659,\"journal\":{\"name\":\"Journal of Polymers and the Environment\",\"volume\":\"33 4\",\"pages\":\"1778 - 1791\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-02-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Polymers and the Environment\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10924-025-03531-6\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ENVIRONMENTAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Polymers and the Environment","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s10924-025-03531-6","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

开发一种既满足骨缺损修复要求,又具有增强生物活性、可生物降解性可控的仿生多孔复合材料支架,对实现骨的有效再生具有重要意义。本文将硅酸钙(CS, CaSiO₃)作为添加剂引入聚乳酸(PLA)中。然后利用三周期最小表面(TPMS)构建支架模型,并利用选择性激光烧结(SLS)技术制备PLA/CS复合支架。其中,CS含量为5wt%时,复合材料支架的抗压强度和模量分别为4.8 MPa和52.1 MPa,分别比PLA支架高104.2%和43.9%。力学强化可归因于碳纤维固有的高刚度引起的颗粒增强效应。此外,CS的掺入加速了支架的降解,同时增强了其生物活性。复合支架在体外测试中也表现出良好的细胞相容性,支持其生物整合的潜力。综上所述,多种性能协同调节的PLA/CS复合支架有望成为骨缺损修复的潜在选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Polylactic Acid/Calcium Silicate Composite Scaffold Fabricated by Selective Laser Sintering with Coordinated Regulation of Bioactivity Induction, Degradation, and Mechanical Enhancement

Polylactic Acid/Calcium Silicate Composite Scaffold Fabricated by Selective Laser Sintering with Coordinated Regulation of Bioactivity Induction, Degradation, and Mechanical Enhancement

Developing a biomimetic porous composite scaffold with mechanical properties tailored to meet the requirements of bone defect repair, enhanced bioactivity, and controlled biodegradability is of great significance for effective bone regeneration. In this work, calcium silicate (CS, CaSiO₃) was introduced into polylactic acid (PLA) as an addition. A scaffold model was then constructed using triply periodic minimal surfaces (TPMS), and a PLA/CS composite scaffold was fabricated using selective laser sintering (SLS) technology. Among them, when the CS content was 5wt%, the compressive strength and modulus of the composite scaffold were 4.8 MPa and 52.1 MPa, respectively, which were 104.2% and 43.9% higher than those of the PLA scaffold. The mechanical strengthening can be attributed to the particle reinforcement effect caused by the inherent high stiffness of CS. Additionally, the incorporation of CS accelerates the degradation of the scaffold while enhancing its bioactivity. The composite scaffold also demonstrated favorable cell compatibility in in vitro tests, supporting its potential for biological integration. In summary, the PLA/CS composite scaffold with coordinated regulation of multiple properties is expected to become a potential choice for bone defect repair.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Polymers and the Environment
Journal of Polymers and the Environment 工程技术-高分子科学
CiteScore
9.50
自引率
7.50%
发文量
297
审稿时长
9 months
期刊介绍: The Journal of Polymers and the Environment fills the need for an international forum in this diverse and rapidly expanding field. The journal serves a crucial role for the publication of information from a wide range of disciplines and is a central outlet for the publication of high-quality peer-reviewed original papers, review articles and short communications. The journal is intentionally interdisciplinary in regard to contributions and covers the following subjects - polymers, environmentally degradable polymers, and degradation pathways: biological, photochemical, oxidative and hydrolytic; new environmental materials: derived by chemical and biosynthetic routes; environmental blends and composites; developments in processing and reactive processing of environmental polymers; characterization of environmental materials: mechanical, physical, thermal, rheological, morphological, and others; recyclable polymers and plastics recycling environmental testing: in-laboratory simulations, outdoor exposures, and standardization of methodologies; environmental fate: end products and intermediates of biodegradation; microbiology and enzymology of polymer biodegradation; solid-waste management and public legislation specific to environmental polymers; and other related topics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信