Mohsen Shahi, Vahid Sepahvandi, Hamed Saghaei, Tofiq Nurmohammadi, Faouzi Bahloul, Behnam Jafari, Abdullah S. Karar, Mohammad Soroosh, Ehsan Adibnia
{"title":"基于全光非与异或逻辑门的光子晶体4 × 2编码器设计","authors":"Mohsen Shahi, Vahid Sepahvandi, Hamed Saghaei, Tofiq Nurmohammadi, Faouzi Bahloul, Behnam Jafari, Abdullah S. Karar, Mohammad Soroosh, Ehsan Adibnia","doi":"10.1007/s11082-025-08147-7","DOIUrl":null,"url":null,"abstract":"<div><p>This study presents the design and optimization of multi-functional all-optical NOT and XOR logic gates based on interference effects within two-dimensional photonic crystal structures. Our approach aims to address the growing demand for high-performance components in next-generation photonic integrated circuits (PICs). We enhanced the structure’s applicability and performance by carefully optimizing the output waveguide configuration. Our design achieved impressive performance metrics, including a response time of approximately 0.15 ps, a contrast ratio of 32.88 dB, and a bit rate of roughly 6.67 Tbit/s. Notably, the compact size of 83.55 μm² makes our design particularly suitable for PICs. To demonstrate the versatility of our approach, we developed an optimized 4 × 2 encoder based on the same design principles. This more complex structure with a compact size of 133.67 μm² exhibited a contrast ratio of approximately 26.54 dB, further validating the flexibility and practicality of our designs for integration into optical circuits. Our methodology employed the plane wave expansion method for determining and analyzing the photonic bandgap range. In contrast, the finite-difference time-domain method was utilized to simulate and evaluate the proposed structures’ performance. These results collectively demonstrate the significant potential of our designs for future PIC applications, offering a promising pathway toward high-performance, integrated optical computing systems.</p></div>","PeriodicalId":720,"journal":{"name":"Optical and Quantum Electronics","volume":"57 4","pages":""},"PeriodicalIF":4.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Design of a photonic crystal 4 × 2 encoder based on all-optical NOT and XOR logic gates\",\"authors\":\"Mohsen Shahi, Vahid Sepahvandi, Hamed Saghaei, Tofiq Nurmohammadi, Faouzi Bahloul, Behnam Jafari, Abdullah S. Karar, Mohammad Soroosh, Ehsan Adibnia\",\"doi\":\"10.1007/s11082-025-08147-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>This study presents the design and optimization of multi-functional all-optical NOT and XOR logic gates based on interference effects within two-dimensional photonic crystal structures. Our approach aims to address the growing demand for high-performance components in next-generation photonic integrated circuits (PICs). We enhanced the structure’s applicability and performance by carefully optimizing the output waveguide configuration. Our design achieved impressive performance metrics, including a response time of approximately 0.15 ps, a contrast ratio of 32.88 dB, and a bit rate of roughly 6.67 Tbit/s. Notably, the compact size of 83.55 μm² makes our design particularly suitable for PICs. To demonstrate the versatility of our approach, we developed an optimized 4 × 2 encoder based on the same design principles. This more complex structure with a compact size of 133.67 μm² exhibited a contrast ratio of approximately 26.54 dB, further validating the flexibility and practicality of our designs for integration into optical circuits. Our methodology employed the plane wave expansion method for determining and analyzing the photonic bandgap range. In contrast, the finite-difference time-domain method was utilized to simulate and evaluate the proposed structures’ performance. These results collectively demonstrate the significant potential of our designs for future PIC applications, offering a promising pathway toward high-performance, integrated optical computing systems.</p></div>\",\"PeriodicalId\":720,\"journal\":{\"name\":\"Optical and Quantum Electronics\",\"volume\":\"57 4\",\"pages\":\"\"},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical and Quantum Electronics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11082-025-08147-7\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical and Quantum Electronics","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s11082-025-08147-7","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Design of a photonic crystal 4 × 2 encoder based on all-optical NOT and XOR logic gates
This study presents the design and optimization of multi-functional all-optical NOT and XOR logic gates based on interference effects within two-dimensional photonic crystal structures. Our approach aims to address the growing demand for high-performance components in next-generation photonic integrated circuits (PICs). We enhanced the structure’s applicability and performance by carefully optimizing the output waveguide configuration. Our design achieved impressive performance metrics, including a response time of approximately 0.15 ps, a contrast ratio of 32.88 dB, and a bit rate of roughly 6.67 Tbit/s. Notably, the compact size of 83.55 μm² makes our design particularly suitable for PICs. To demonstrate the versatility of our approach, we developed an optimized 4 × 2 encoder based on the same design principles. This more complex structure with a compact size of 133.67 μm² exhibited a contrast ratio of approximately 26.54 dB, further validating the flexibility and practicality of our designs for integration into optical circuits. Our methodology employed the plane wave expansion method for determining and analyzing the photonic bandgap range. In contrast, the finite-difference time-domain method was utilized to simulate and evaluate the proposed structures’ performance. These results collectively demonstrate the significant potential of our designs for future PIC applications, offering a promising pathway toward high-performance, integrated optical computing systems.
期刊介绍:
Optical and Quantum Electronics provides an international forum for the publication of original research papers, tutorial reviews and letters in such fields as optical physics, optical engineering and optoelectronics. Special issues are published on topics of current interest.
Optical and Quantum Electronics is published monthly. It is concerned with the technology and physics of optical systems, components and devices, i.e., with topics such as: optical fibres; semiconductor lasers and LEDs; light detection and imaging devices; nanophotonics; photonic integration and optoelectronic integrated circuits; silicon photonics; displays; optical communications from devices to systems; materials for photonics (e.g. semiconductors, glasses, graphene); the physics and simulation of optical devices and systems; nanotechnologies in photonics (including engineered nano-structures such as photonic crystals, sub-wavelength photonic structures, metamaterials, and plasmonics); advanced quantum and optoelectronic applications (e.g. quantum computing, memory and communications, quantum sensing and quantum dots); photonic sensors and bio-sensors; Terahertz phenomena; non-linear optics and ultrafast phenomena; green photonics.