焦平面偏振仪偏振精度及其影响机理的研究

IF 2 3区 物理与天体物理 Q3 OPTICS
Zhibo Ma, Naiting Gu, Junbo Zhang, Ao Tang
{"title":"焦平面偏振仪偏振精度及其影响机理的研究","authors":"Zhibo Ma,&nbsp;Naiting Gu,&nbsp;Junbo Zhang,&nbsp;Ao Tang","doi":"10.1007/s00340-025-08443-w","DOIUrl":null,"url":null,"abstract":"<div><p>The division of focal plane (DoFP) polarimeter is a vital tool for polarization imaging due to its compact structure and stable performance. However, its detection accuracy is significantly influenced by fabrication and integration errors of the micro-polarizer array (MPA). To address this, we establish a clear relationship between the accuracy of DoFP polarimeter and error sources, including the integration alignment, integration distance, integration angle, transmission axis angles, and extinction ratio of the MPA. Using a novel mathematical model based on the finite difference time domain method, we quantitatively analyze the impact of these errors on polarization detection accuracy. Our results demonstrate that as the detection accuracy improves from 10<sup>− 1</sup> to 10<sup>− 2</sup> and 10<sup>− 3</sup>, the required fabrication accuracy of MPA’s transmission axis angles and the integration accuracy both increase by approximately one order of magnitude. Additionally, to achieve same accuracy improvements, the extinction ratio of the MPA exhibits nonlinear growth, increasing by about 2.5 times and 20 times, respectively. These findings provide a critical foundation for error control and quantitative performance assessment in DoFP polarimeters, advancing their application in various fields.</p></div>","PeriodicalId":474,"journal":{"name":"Applied Physics B","volume":"131 4","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study on polarization accuracy and its influencing mechanisms of division of focal plane polarimeter\",\"authors\":\"Zhibo Ma,&nbsp;Naiting Gu,&nbsp;Junbo Zhang,&nbsp;Ao Tang\",\"doi\":\"10.1007/s00340-025-08443-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The division of focal plane (DoFP) polarimeter is a vital tool for polarization imaging due to its compact structure and stable performance. However, its detection accuracy is significantly influenced by fabrication and integration errors of the micro-polarizer array (MPA). To address this, we establish a clear relationship between the accuracy of DoFP polarimeter and error sources, including the integration alignment, integration distance, integration angle, transmission axis angles, and extinction ratio of the MPA. Using a novel mathematical model based on the finite difference time domain method, we quantitatively analyze the impact of these errors on polarization detection accuracy. Our results demonstrate that as the detection accuracy improves from 10<sup>− 1</sup> to 10<sup>− 2</sup> and 10<sup>− 3</sup>, the required fabrication accuracy of MPA’s transmission axis angles and the integration accuracy both increase by approximately one order of magnitude. Additionally, to achieve same accuracy improvements, the extinction ratio of the MPA exhibits nonlinear growth, increasing by about 2.5 times and 20 times, respectively. These findings provide a critical foundation for error control and quantitative performance assessment in DoFP polarimeters, advancing their application in various fields.</p></div>\",\"PeriodicalId\":474,\"journal\":{\"name\":\"Applied Physics B\",\"volume\":\"131 4\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applied Physics B\",\"FirstCategoryId\":\"4\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s00340-025-08443-w\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"OPTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applied Physics B","FirstCategoryId":"4","ListUrlMain":"https://link.springer.com/article/10.1007/s00340-025-08443-w","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0

摘要

分焦平面(DoFP)偏振仪结构紧凑,性能稳定,是偏振成像的重要工具。然而,其检测精度受到微偏振阵列(MPA)制造和集成误差的显著影响。为了解决这个问题,我们建立了DoFP偏振计的精度与误差源之间的关系,包括积分对准、积分距离、积分角、传输轴角和MPA消光比。利用基于时域有限差分法的数学模型,定量分析了这些误差对偏振检测精度的影响。结果表明,当检测精度从10−1提高到10−2和10−3时,MPA传输轴角的制造精度和积分精度都提高了大约一个数量级。此外,为了达到相同的精度提高,MPA的消光比呈现非线性增长,分别增加了约2.5倍和20倍。这些发现为DoFP偏振仪的误差控制和定量性能评估提供了重要的基础,促进了DoFP偏振仪在各个领域的应用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Study on polarization accuracy and its influencing mechanisms of division of focal plane polarimeter

The division of focal plane (DoFP) polarimeter is a vital tool for polarization imaging due to its compact structure and stable performance. However, its detection accuracy is significantly influenced by fabrication and integration errors of the micro-polarizer array (MPA). To address this, we establish a clear relationship between the accuracy of DoFP polarimeter and error sources, including the integration alignment, integration distance, integration angle, transmission axis angles, and extinction ratio of the MPA. Using a novel mathematical model based on the finite difference time domain method, we quantitatively analyze the impact of these errors on polarization detection accuracy. Our results demonstrate that as the detection accuracy improves from 10− 1 to 10− 2 and 10− 3, the required fabrication accuracy of MPA’s transmission axis angles and the integration accuracy both increase by approximately one order of magnitude. Additionally, to achieve same accuracy improvements, the extinction ratio of the MPA exhibits nonlinear growth, increasing by about 2.5 times and 20 times, respectively. These findings provide a critical foundation for error control and quantitative performance assessment in DoFP polarimeters, advancing their application in various fields.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Applied Physics B
Applied Physics B 物理-光学
CiteScore
4.00
自引率
4.80%
发文量
202
审稿时长
3.0 months
期刊介绍: Features publication of experimental and theoretical investigations in applied physics Offers invited reviews in addition to regular papers Coverage includes laser physics, linear and nonlinear optics, ultrafast phenomena, photonic devices, optical and laser materials, quantum optics, laser spectroscopy of atoms, molecules and clusters, and more 94% of authors who answered a survey reported that they would definitely publish or probably publish in the journal again Publishing essential research results in two of the most important areas of applied physics, both Applied Physics sections figure among the top most cited journals in this field. In addition to regular papers Applied Physics B: Lasers and Optics features invited reviews. Fields of topical interest are covered by feature issues. The journal also includes a rapid communication section for the speedy publication of important and particularly interesting results.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信