人类世生物过程的中断:物候不匹配的情况

IF 1.4 4区 生物学 Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY
Maël Montévil
{"title":"人类世生物过程的中断:物候不匹配的情况","authors":"Maël Montévil","doi":"10.1007/s10441-025-09496-2","DOIUrl":null,"url":null,"abstract":"<div><p>Biologists are increasingly documenting anthropogenic disruptions, both at the organism and ecosystem levels, indicating that these disruptions are a fundamental, qualitative component of the Anthropocene. Nonetheless, the notion of disruption has yet to be theorized. Informally, disruptions are direct or indirect consequences of specific causes that impair the contribution of parts of living systems to their ability to last over time. To progress in this theorization, we work here on a particular case. Even relatively minor temperature changes can significantly impact plant-pollinator synchrony, disrupting mutualistic interaction networks. Understanding this phenomenon requires a specific rationale since models describing it use both historical and systemic reasoning. Specifically, history justifies that the ecosystem initially exists in a very narrow part of the possibility space where all its populations are viable, and the disruption leads to a more generic configuration where some populations are not viable. Building on this rationale, we develop a mathematical schema inspired by Boltzmann’s entropy, apply it to this situation, and provide a technical definition of disruption.</p></div>","PeriodicalId":7057,"journal":{"name":"Acta Biotheoretica","volume":"73 2","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2025-03-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Disruption of Biological Processes in the Anthropocene: The Case of Phenological Mismatch\",\"authors\":\"Maël Montévil\",\"doi\":\"10.1007/s10441-025-09496-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Biologists are increasingly documenting anthropogenic disruptions, both at the organism and ecosystem levels, indicating that these disruptions are a fundamental, qualitative component of the Anthropocene. Nonetheless, the notion of disruption has yet to be theorized. Informally, disruptions are direct or indirect consequences of specific causes that impair the contribution of parts of living systems to their ability to last over time. To progress in this theorization, we work here on a particular case. Even relatively minor temperature changes can significantly impact plant-pollinator synchrony, disrupting mutualistic interaction networks. Understanding this phenomenon requires a specific rationale since models describing it use both historical and systemic reasoning. Specifically, history justifies that the ecosystem initially exists in a very narrow part of the possibility space where all its populations are viable, and the disruption leads to a more generic configuration where some populations are not viable. Building on this rationale, we develop a mathematical schema inspired by Boltzmann’s entropy, apply it to this situation, and provide a technical definition of disruption.</p></div>\",\"PeriodicalId\":7057,\"journal\":{\"name\":\"Acta Biotheoretica\",\"volume\":\"73 2\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2025-03-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Biotheoretica\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10441-025-09496-2\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATHEMATICAL & COMPUTATIONAL BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Biotheoretica","FirstCategoryId":"99","ListUrlMain":"https://link.springer.com/article/10.1007/s10441-025-09496-2","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATHEMATICAL & COMPUTATIONAL BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

生物学家越来越多地在生物和生态系统层面记录人为破坏,表明这些破坏是人类世的一个基本的、定性的组成部分。尽管如此,颠覆的概念尚未被理论化。非正式地说,破坏是特定原因的直接或间接后果,这些原因损害了生命系统部分对其持续能力的贡献。为了推进这一理论,我们在这里研究一个特殊的案例。即使是相对较小的温度变化也会显著影响植物-传粉者的同步,破坏互惠的相互作用网络。理解这种现象需要一个特定的理论基础,因为描述它的模型既使用历史推理,也使用系统推理。具体来说,历史证明,生态系统最初存在于可能性空间的一个非常狭窄的部分,所有的种群都可以生存,而破坏导致更普遍的配置,其中一些种群无法生存。在此基础上,我们开发了一个受玻尔兹曼熵启发的数学模式,将其应用于这种情况,并提供了中断的技术定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Disruption of Biological Processes in the Anthropocene: The Case of Phenological Mismatch

Biologists are increasingly documenting anthropogenic disruptions, both at the organism and ecosystem levels, indicating that these disruptions are a fundamental, qualitative component of the Anthropocene. Nonetheless, the notion of disruption has yet to be theorized. Informally, disruptions are direct or indirect consequences of specific causes that impair the contribution of parts of living systems to their ability to last over time. To progress in this theorization, we work here on a particular case. Even relatively minor temperature changes can significantly impact plant-pollinator synchrony, disrupting mutualistic interaction networks. Understanding this phenomenon requires a specific rationale since models describing it use both historical and systemic reasoning. Specifically, history justifies that the ecosystem initially exists in a very narrow part of the possibility space where all its populations are viable, and the disruption leads to a more generic configuration where some populations are not viable. Building on this rationale, we develop a mathematical schema inspired by Boltzmann’s entropy, apply it to this situation, and provide a technical definition of disruption.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Acta Biotheoretica
Acta Biotheoretica 生物-生物学
CiteScore
2.70
自引率
7.70%
发文量
19
审稿时长
3 months
期刊介绍: Acta Biotheoretica is devoted to the promotion of theoretical biology, encompassing mathematical biology and the philosophy of biology, paying special attention to the methodology of formation of biological theory. Papers on all kind of biological theories are welcome. Interesting subjects include philosophy of biology, biomathematics, computational biology, genetics, ecology and morphology. The process of theory formation can be presented in verbal or mathematical form. Moreover, purely methodological papers can be devoted to the historical origins of the philosophy underlying biological theories and concepts. Papers should contain clear statements of biological assumptions, and where applicable, a justification of their translation into mathematical form and a detailed discussion of the mathematical treatment. The connection to empirical data should be clarified. Acta Biotheoretica also welcomes critical book reviews, short comments on previous papers and short notes directing attention to interesting new theoretical ideas.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信