LPBF中一种新型“气泡结构”及其在TPMS-Gyroid上的机械强度研究

IF 3.3 3区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Cemal İrfan Çalışkan, Gökhan Özer, Hamaid Mahmood Khan
{"title":"LPBF中一种新型“气泡结构”及其在TPMS-Gyroid上的机械强度研究","authors":"Cemal İrfan Çalışkan,&nbsp;Gökhan Özer,&nbsp;Hamaid Mahmood Khan","doi":"10.1007/s12540-024-01798-3","DOIUrl":null,"url":null,"abstract":"<div><p>In our previous research within the scope of process parameters change, the innovative 30 µm synchronous scanning strategy (SSS) in the Laser Powder Bed Fusion production system and the effect of this scanning strategy on industrial gears were discussed in the microstructure examination of industrial gears produced with this scanning strategy. It was observed that the Additive Manufacturing (AM) traditional melt pool form changed, and the strength increased by approx. 23%. In this article, carried out in the second stage, a new microstructure in the form of bubbles obtained with this new synchronous scanning strategy, discussed in depth with laboratory research, is defined as “Bubble Microstructure.” This new microstructure definition, which constitutes the innovative side of the study, is in addition to the 30 µm SSS research that was discussed in the first phase of the study; 40 µm SSS production and research carried out at this stage are detailed within the scope of tensile tests in ASTM-E8 standard, detailed microstructure examinations in OM (Optic Microscope) and SEM (Scanning Electron Microscope), EDX, XRD analyzes and the mechanical strength effect of this microstructure on the Triple Periotic Minimal Surfaces geometry. This new SSS approach is considered promising in industrial areas where innovative geometries can be produced with AM, weight-reduced designs using topology optimization, and DfAM (Design for Additive Manufacturing) are used.</p><h3>Graphical Abstract</h3>\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":703,"journal":{"name":"Metals and Materials International","volume":"31 4","pages":"971 - 980"},"PeriodicalIF":3.3000,"publicationDate":"2024-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Novel Form “Bubble Microstructure” in LPBF and Investigation of Its Mechanical Strength on TPMS-Gyroid\",\"authors\":\"Cemal İrfan Çalışkan,&nbsp;Gökhan Özer,&nbsp;Hamaid Mahmood Khan\",\"doi\":\"10.1007/s12540-024-01798-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>In our previous research within the scope of process parameters change, the innovative 30 µm synchronous scanning strategy (SSS) in the Laser Powder Bed Fusion production system and the effect of this scanning strategy on industrial gears were discussed in the microstructure examination of industrial gears produced with this scanning strategy. It was observed that the Additive Manufacturing (AM) traditional melt pool form changed, and the strength increased by approx. 23%. In this article, carried out in the second stage, a new microstructure in the form of bubbles obtained with this new synchronous scanning strategy, discussed in depth with laboratory research, is defined as “Bubble Microstructure.” This new microstructure definition, which constitutes the innovative side of the study, is in addition to the 30 µm SSS research that was discussed in the first phase of the study; 40 µm SSS production and research carried out at this stage are detailed within the scope of tensile tests in ASTM-E8 standard, detailed microstructure examinations in OM (Optic Microscope) and SEM (Scanning Electron Microscope), EDX, XRD analyzes and the mechanical strength effect of this microstructure on the Triple Periotic Minimal Surfaces geometry. This new SSS approach is considered promising in industrial areas where innovative geometries can be produced with AM, weight-reduced designs using topology optimization, and DfAM (Design for Additive Manufacturing) are used.</p><h3>Graphical Abstract</h3>\\n<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>\",\"PeriodicalId\":703,\"journal\":{\"name\":\"Metals and Materials International\",\"volume\":\"31 4\",\"pages\":\"971 - 980\"},\"PeriodicalIF\":3.3000,\"publicationDate\":\"2024-11-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Metals and Materials International\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12540-024-01798-3\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Metals and Materials International","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s12540-024-01798-3","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在我们之前的研究中,在工艺参数变化的范围内,我们讨论了激光粉末床融合生产系统中创新的30µm同步扫描策略(SSS),以及该扫描策略对工业齿轮的影响,并对使用该扫描策略生产的工业齿轮进行了微观结构检测。观察到增材制造(AM)的传统熔池形态发生了变化,强度提高了约1倍。23%。在第二阶段进行的文章中,利用这种新的同步扫描策略获得了气泡形式的新微观结构,并与实验室研究进行了深入的讨论,将其定义为“气泡微观结构”。这个新的微观结构定义构成了研究的创新方面,是对研究第一阶段讨论的30µm SSS研究的补充;在此阶段进行的40µm SSS生产和研究在ASTM-E8标准的拉伸试验范围内进行了详细的描述,在OM(光学显微镜)和SEM(扫描电子显微镜)中进行了详细的微观结构检查,EDX, XRD分析以及该微观结构对三周期最小表面几何形状的机械强度影响。这种新的SSS方法被认为在工业领域很有前途,在这些领域中,可以使用AM生产创新几何形状,使用拓扑优化和DfAM(增材制造设计)来减轻重量。图形抽象
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Novel Form “Bubble Microstructure” in LPBF and Investigation of Its Mechanical Strength on TPMS-Gyroid

In our previous research within the scope of process parameters change, the innovative 30 µm synchronous scanning strategy (SSS) in the Laser Powder Bed Fusion production system and the effect of this scanning strategy on industrial gears were discussed in the microstructure examination of industrial gears produced with this scanning strategy. It was observed that the Additive Manufacturing (AM) traditional melt pool form changed, and the strength increased by approx. 23%. In this article, carried out in the second stage, a new microstructure in the form of bubbles obtained with this new synchronous scanning strategy, discussed in depth with laboratory research, is defined as “Bubble Microstructure.” This new microstructure definition, which constitutes the innovative side of the study, is in addition to the 30 µm SSS research that was discussed in the first phase of the study; 40 µm SSS production and research carried out at this stage are detailed within the scope of tensile tests in ASTM-E8 standard, detailed microstructure examinations in OM (Optic Microscope) and SEM (Scanning Electron Microscope), EDX, XRD analyzes and the mechanical strength effect of this microstructure on the Triple Periotic Minimal Surfaces geometry. This new SSS approach is considered promising in industrial areas where innovative geometries can be produced with AM, weight-reduced designs using topology optimization, and DfAM (Design for Additive Manufacturing) are used.

Graphical Abstract

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Metals and Materials International
Metals and Materials International 工程技术-材料科学:综合
CiteScore
7.10
自引率
8.60%
发文量
197
审稿时长
3.7 months
期刊介绍: Metals and Materials International publishes original papers and occasional critical reviews on all aspects of research and technology in materials engineering: physical metallurgy, materials science, and processing of metals and other materials. Emphasis is placed on those aspects of the science of materials that are concerned with the relationships among the processing, structure and properties (mechanical, chemical, electrical, electrochemical, magnetic and optical) of materials. Aspects of processing include the melting, casting, and fabrication with the thermodynamics, kinetics and modeling.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信