硫基和氧基固化剂对邻苯二腈树脂活化能的影响

IF 1.1 4区 化学 Q4 CHEMISTRY, PHYSICAL
Joon Hyuk Lee, Jungkun Song, Eunkyung Jeon, Jaeho Choi
{"title":"硫基和氧基固化剂对邻苯二腈树脂活化能的影响","authors":"Joon Hyuk Lee,&nbsp;Jungkun Song,&nbsp;Eunkyung Jeon,&nbsp;Jaeho Choi","doi":"10.1134/S0012501624600220","DOIUrl":null,"url":null,"abstract":"<p>High-performance polymers characterized by their exceptional thermal stability are crucial across various industries. Here, phthalonitrile resins have attracted significant attention due to their ability to form highly cross-linked networks upon curing, leading to outstanding properties suitable for demanding applications in aerospace, electronics, and automotive sectors. This study investigated the thermal curing kinetics and resulting thermal stability of phthalonitrile resins cured with 4,4'-diaminodiphenyl sulfone (DDS) and bisphenol A diglycidyl ether (DGEBA). Kissinger and Friedman methods were employed to analyze the curing process using thermogravimetric analysis data at various heating rates. The results revealed that DGEBA-cured networks exhibited higher thermal stability and activation energy compared to DDS-cured networks. This was attributed to the stronger C–O bonds formed in DGEBA networks. The higher bond dissociation energy of C–O bonds, arising from factors including electronegativity difference, bond length, orbital overlap, and hybridization necessitates a greater energy input for bond cleavage during thermal degradation. These findings highlight the critical role of curing agent selection in tailoring the thermal properties of phthalonitrile-based materials for high-performance applications<i>.</i></p>","PeriodicalId":532,"journal":{"name":"Doklady Physical Chemistry","volume":"517 1-2","pages":"113 - 119"},"PeriodicalIF":1.1000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Activation Energies of Phthalonitrile Resins Using Sulfur- and Oxygen-Based Curing Agents\",\"authors\":\"Joon Hyuk Lee,&nbsp;Jungkun Song,&nbsp;Eunkyung Jeon,&nbsp;Jaeho Choi\",\"doi\":\"10.1134/S0012501624600220\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>High-performance polymers characterized by their exceptional thermal stability are crucial across various industries. Here, phthalonitrile resins have attracted significant attention due to their ability to form highly cross-linked networks upon curing, leading to outstanding properties suitable for demanding applications in aerospace, electronics, and automotive sectors. This study investigated the thermal curing kinetics and resulting thermal stability of phthalonitrile resins cured with 4,4'-diaminodiphenyl sulfone (DDS) and bisphenol A diglycidyl ether (DGEBA). Kissinger and Friedman methods were employed to analyze the curing process using thermogravimetric analysis data at various heating rates. The results revealed that DGEBA-cured networks exhibited higher thermal stability and activation energy compared to DDS-cured networks. This was attributed to the stronger C–O bonds formed in DGEBA networks. The higher bond dissociation energy of C–O bonds, arising from factors including electronegativity difference, bond length, orbital overlap, and hybridization necessitates a greater energy input for bond cleavage during thermal degradation. These findings highlight the critical role of curing agent selection in tailoring the thermal properties of phthalonitrile-based materials for high-performance applications<i>.</i></p>\",\"PeriodicalId\":532,\"journal\":{\"name\":\"Doklady Physical Chemistry\",\"volume\":\"517 1-2\",\"pages\":\"113 - 119\"},\"PeriodicalIF\":1.1000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Doklady Physical Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://link.springer.com/article/10.1134/S0012501624600220\",\"RegionNum\":4,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Doklady Physical Chemistry","FirstCategoryId":"92","ListUrlMain":"https://link.springer.com/article/10.1134/S0012501624600220","RegionNum":4,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

高性能聚合物以其优异的热稳定性为特征,在各个行业中都至关重要。在这里,邻苯二腈树脂由于其在固化时形成高度交联网络的能力而引起了极大的关注,从而导致了适用于航空航天,电子和汽车行业苛刻应用的卓越性能。研究了4,4′-二氨基二苯基砜(DDS)和双酚A二甘油酯醚(DGEBA)固化邻苯二腈树脂的热固化动力学和热稳定性。采用Kissinger和Friedman方法对不同升温速率下的固化过程进行热重分析。结果表明,与dds固化网络相比,dgeba固化网络具有更高的热稳定性和活化能。这是由于在DGEBA网络中形成了更强的C-O键。由于电负性差异、键长、轨道重叠和杂化等因素,C-O键的键解离能较高,因此在热降解过程中需要更大的键解离能量输入。这些发现强调了固化剂选择在调整邻苯二腈基材料的高性能应用的热性能方面的关键作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Activation Energies of Phthalonitrile Resins Using Sulfur- and Oxygen-Based Curing Agents

Activation Energies of Phthalonitrile Resins Using Sulfur- and Oxygen-Based Curing Agents

High-performance polymers characterized by their exceptional thermal stability are crucial across various industries. Here, phthalonitrile resins have attracted significant attention due to their ability to form highly cross-linked networks upon curing, leading to outstanding properties suitable for demanding applications in aerospace, electronics, and automotive sectors. This study investigated the thermal curing kinetics and resulting thermal stability of phthalonitrile resins cured with 4,4'-diaminodiphenyl sulfone (DDS) and bisphenol A diglycidyl ether (DGEBA). Kissinger and Friedman methods were employed to analyze the curing process using thermogravimetric analysis data at various heating rates. The results revealed that DGEBA-cured networks exhibited higher thermal stability and activation energy compared to DDS-cured networks. This was attributed to the stronger C–O bonds formed in DGEBA networks. The higher bond dissociation energy of C–O bonds, arising from factors including electronegativity difference, bond length, orbital overlap, and hybridization necessitates a greater energy input for bond cleavage during thermal degradation. These findings highlight the critical role of curing agent selection in tailoring the thermal properties of phthalonitrile-based materials for high-performance applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Doklady Physical Chemistry
Doklady Physical Chemistry 化学-物理化学
CiteScore
1.50
自引率
0.00%
发文量
9
审稿时长
6-12 weeks
期刊介绍: Doklady Physical Chemistry is a monthly journal containing English translations of current Russian research in physical chemistry from the Physical Chemistry sections of the Doklady Akademii Nauk (Proceedings of the Russian Academy of Sciences). The journal publishes the most significant new research in physical chemistry being done in Russia, thus ensuring its scientific priority. Doklady Physical Chemistry presents short preliminary accounts of the application of the state-of-the-art physical chemistry ideas and methods to the study of organic and inorganic compounds and macromolecules; polymeric, inorganic and composite materials as well as corresponding processes. The journal is intended for scientists in all fields of chemistry and in interdisciplinary sciences.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信