甲醇基高功率热电转换装置

Touya Aiba, Haruka Yamada and Yutaka Moritomo
{"title":"甲醇基高功率热电转换装置","authors":"Touya Aiba, Haruka Yamada and Yutaka Moritomo","doi":"10.1039/D4IM00113C","DOIUrl":null,"url":null,"abstract":"<p>A liquid thermoelectric conversion device (LTE) converts environmental heat into electric power <em>via</em> the electrochemical Seebeck coefficient <em>α</em>. The maximum power (<em>W</em><small><sub>max</sub></small>) is expressed as <img>, where Δ<em>T</em> and <em>R</em>′ are the temperature difference between electrodes and device resistance in operation, respectively. Here, we systematically investigated the resistance components of LTEs composed of aqueous, methanol (MeOH) and acetone solutions containing 0.8 M Fe(ClO<small><sub>4</sub></small>)<small><sub>2</sub></small>/Fe(ClO<small><sub>4</sub></small>)<small><sub>3</sub></small>. We found that the charge transfer resistance <em>R</em><small><sub>ct</sub></small> of the MeOH LTE is the smallest among the three LTEs. We demonstrated that the <em>W</em><small><sub>max</sub></small> of the MeOH LTE is slightly larger than or comparable with that of the corresponding aqueous LTE. We further discussed the effects of the convection of an electrolyte on <em>R</em>′.</p><p>Keywords: Liquid thermoelectric conversion; Methanol; Resistivity components; Coated electrode.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 223-230"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00113c?page=search","citationCount":"0","resultStr":"{\"title\":\"Methanol-based thermoelectric conversion device with high power†\",\"authors\":\"Touya Aiba, Haruka Yamada and Yutaka Moritomo\",\"doi\":\"10.1039/D4IM00113C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>A liquid thermoelectric conversion device (LTE) converts environmental heat into electric power <em>via</em> the electrochemical Seebeck coefficient <em>α</em>. The maximum power (<em>W</em><small><sub>max</sub></small>) is expressed as <img>, where Δ<em>T</em> and <em>R</em>′ are the temperature difference between electrodes and device resistance in operation, respectively. Here, we systematically investigated the resistance components of LTEs composed of aqueous, methanol (MeOH) and acetone solutions containing 0.8 M Fe(ClO<small><sub>4</sub></small>)<small><sub>2</sub></small>/Fe(ClO<small><sub>4</sub></small>)<small><sub>3</sub></small>. We found that the charge transfer resistance <em>R</em><small><sub>ct</sub></small> of the MeOH LTE is the smallest among the three LTEs. We demonstrated that the <em>W</em><small><sub>max</sub></small> of the MeOH LTE is slightly larger than or comparable with that of the corresponding aqueous LTE. We further discussed the effects of the convection of an electrolyte on <em>R</em>′.</p><p>Keywords: Liquid thermoelectric conversion; Methanol; Resistivity components; Coated electrode.</p>\",\"PeriodicalId\":29808,\"journal\":{\"name\":\"Industrial Chemistry & Materials\",\"volume\":\" 2\",\"pages\":\" 223-230\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00113c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Chemistry & Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/im/d4im00113c\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/im/d4im00113c","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

液体热电转换装置(LTE)通过电化学塞贝克系数α将环境热转化为电能。最大功率(Wmax)表示为,其中ΔT和R′分别为工作时电极之间的温度差和器件电阻。本文系统地研究了由0.8 M Fe(ClO4)2/Fe(ClO4)3的水溶液、甲醇(MeOH)和丙酮溶液组成的LTEs的电阻组分。我们发现MeOH LTE的电荷转移电阻Rct是三种LTE中最小的。我们证明了MeOH LTE的Wmax略大于或与相应的水相LTE相当。进一步讨论了电解液对流对R′的影响。关键词:液体热电转换;甲醇;电阻率组件;涂层电极。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Methanol-based thermoelectric conversion device with high power†

Methanol-based thermoelectric conversion device with high power†

A liquid thermoelectric conversion device (LTE) converts environmental heat into electric power via the electrochemical Seebeck coefficient α. The maximum power (Wmax) is expressed as , where ΔT and R′ are the temperature difference between electrodes and device resistance in operation, respectively. Here, we systematically investigated the resistance components of LTEs composed of aqueous, methanol (MeOH) and acetone solutions containing 0.8 M Fe(ClO4)2/Fe(ClO4)3. We found that the charge transfer resistance Rct of the MeOH LTE is the smallest among the three LTEs. We demonstrated that the Wmax of the MeOH LTE is slightly larger than or comparable with that of the corresponding aqueous LTE. We further discussed the effects of the convection of an electrolyte on R′.

Keywords: Liquid thermoelectric conversion; Methanol; Resistivity components; Coated electrode.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信