平面内电子离域氮化碳光催化剂的合理设计

Quanguo Hao, Yuhua Zhu, Yuan Li, Zhenhua Li, Hong Yuan and Shuxin Ouyang
{"title":"平面内电子离域氮化碳光催化剂的合理设计","authors":"Quanguo Hao, Yuhua Zhu, Yuan Li, Zhenhua Li, Hong Yuan and Shuxin Ouyang","doi":"10.1039/D4IM00118D","DOIUrl":null,"url":null,"abstract":"<p>Photocatalytic hydrogen evolution based on the use of carbon nitride (CN) catalyst offers a sustainable route to convert solar energy into hydrogen energy; however, its activity is severely restricted by the sluggish transfer of photogenerated charges. Herein, we report a novel approach involving boron (B) doping-induced π-electron delocalization in CN for efficient hydrogen (H<small><sub>2</sub></small>) evolution. The as-prepared B-doped CN (BCN) catalyst presented an 8.6-fold enhancement in the H<small><sub>2</sub></small>-evolution rate (7924.0 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>) under visible-light irradiation compared with pristine CN, which corresponded to an apparent quantum yield (AQY) of 14.5% at 405 nm. Experimental analysis and density functional theory (DFT) calculations demonstrated that B doping induced π-electron delocalization in conjugated CN rings to generate a new intermediate state within the band gap to provide a new transfer path for visible-light utilization, thus achieving the high separation and transfer of photoinduced carriers. This work provides a new approach to adjust the electronic structure of CN-like conjugated polymer semiconductors for efficient catalytic energy conversion.</p><p>Keywords: B doping; π-electron delocalization; H<small><sub>2</sub></small> evolution; Photocatalysis.</p>","PeriodicalId":29808,"journal":{"name":"Industrial Chemistry & Materials","volume":" 2","pages":" 203-212"},"PeriodicalIF":0.0000,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00118d?page=search","citationCount":"0","resultStr":"{\"title\":\"Rational design of a carbon nitride photocatalyst with in-plane electron delocalization for photocatalytic hydrogen evolution†\",\"authors\":\"Quanguo Hao, Yuhua Zhu, Yuan Li, Zhenhua Li, Hong Yuan and Shuxin Ouyang\",\"doi\":\"10.1039/D4IM00118D\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Photocatalytic hydrogen evolution based on the use of carbon nitride (CN) catalyst offers a sustainable route to convert solar energy into hydrogen energy; however, its activity is severely restricted by the sluggish transfer of photogenerated charges. Herein, we report a novel approach involving boron (B) doping-induced π-electron delocalization in CN for efficient hydrogen (H<small><sub>2</sub></small>) evolution. The as-prepared B-doped CN (BCN) catalyst presented an 8.6-fold enhancement in the H<small><sub>2</sub></small>-evolution rate (7924.0 μmol h<small><sup>−1</sup></small> g<small><sup>−1</sup></small>) under visible-light irradiation compared with pristine CN, which corresponded to an apparent quantum yield (AQY) of 14.5% at 405 nm. Experimental analysis and density functional theory (DFT) calculations demonstrated that B doping induced π-electron delocalization in conjugated CN rings to generate a new intermediate state within the band gap to provide a new transfer path for visible-light utilization, thus achieving the high separation and transfer of photoinduced carriers. This work provides a new approach to adjust the electronic structure of CN-like conjugated polymer semiconductors for efficient catalytic energy conversion.</p><p>Keywords: B doping; π-electron delocalization; H<small><sub>2</sub></small> evolution; Photocatalysis.</p>\",\"PeriodicalId\":29808,\"journal\":{\"name\":\"Industrial Chemistry & Materials\",\"volume\":\" 2\",\"pages\":\" 203-212\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/im/d4im00118d?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Industrial Chemistry & Materials\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/im/d4im00118d\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Industrial Chemistry & Materials","FirstCategoryId":"1085","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/im/d4im00118d","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

基于氮化碳(CN)催化剂的光催化析氢为太阳能转化为氢能提供了一条可持续的途径;然而,它的活性受到光生电荷缓慢转移的严重限制。在此,我们报道了一种新的方法,涉及硼(B)掺杂诱导CN中π电子离域的有效氢(H2)演化。制备的b掺杂CN (BCN)催化剂在可见光照射下的h2 -析出速率(7924.0 μmol h−1 g−1)比原始CN提高了8.6倍,在405 nm处的表观量子产率(AQY)为14.5%。实验分析和密度泛函理论(DFT)计算表明,B掺杂诱导共轭CN环中π-电子离域在带隙内产生新的中间态,为可见光利用提供了新的转移路径,从而实现了光诱导载流子的高分离和转移。本工作为调整类cn共轭聚合物半导体的电子结构以实现高效的催化能量转换提供了新的途径。关键词:B掺杂;π电子离域;H2进化;光催化作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Rational design of a carbon nitride photocatalyst with in-plane electron delocalization for photocatalytic hydrogen evolution†

Rational design of a carbon nitride photocatalyst with in-plane electron delocalization for photocatalytic hydrogen evolution†

Photocatalytic hydrogen evolution based on the use of carbon nitride (CN) catalyst offers a sustainable route to convert solar energy into hydrogen energy; however, its activity is severely restricted by the sluggish transfer of photogenerated charges. Herein, we report a novel approach involving boron (B) doping-induced π-electron delocalization in CN for efficient hydrogen (H2) evolution. The as-prepared B-doped CN (BCN) catalyst presented an 8.6-fold enhancement in the H2-evolution rate (7924.0 μmol h−1 g−1) under visible-light irradiation compared with pristine CN, which corresponded to an apparent quantum yield (AQY) of 14.5% at 405 nm. Experimental analysis and density functional theory (DFT) calculations demonstrated that B doping induced π-electron delocalization in conjugated CN rings to generate a new intermediate state within the band gap to provide a new transfer path for visible-light utilization, thus achieving the high separation and transfer of photoinduced carriers. This work provides a new approach to adjust the electronic structure of CN-like conjugated polymer semiconductors for efficient catalytic energy conversion.

Keywords: B doping; π-electron delocalization; H2 evolution; Photocatalysis.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Industrial Chemistry & Materials
Industrial Chemistry & Materials chemistry, chemical engineering, functional materials, energy, etc.-
自引率
0.00%
发文量
0
期刊介绍: Industrial Chemistry & Materials (ICM) publishes significant innovative research and major technological breakthroughs in all aspects of industrial chemistry and materials, with a particular focus on the important innovation of low-carbon chemical industry, energy and functional materials. By bringing researchers, engineers, and policymakers into one place, research is inspired, challenges are solved and the applications of science and technology are accelerated. The global editorial and advisory board members are valued experts in the community. With their support, the rigorous editorial practices and dissemination ensures your research is accessible and discoverable on a global scale. Industrial Chemistry & Materials publishes: ● Communications ● Full papers ● Minireviews ● Reviews ● Perspectives ● Comments
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信