利用静态谐波线圈测量 Nb3Sn 磁体中的快速瞬变

IF 1.7 3区 物理与天体物理 Q3 ENGINEERING, ELECTRICAL & ELECTRONIC
Piotr Rogacki;Lucio Fiscarelli;Arnaud Devred;Stephan Russenschuck
{"title":"利用静态谐波线圈测量 Nb3Sn 磁体中的快速瞬变","authors":"Piotr Rogacki;Lucio Fiscarelli;Arnaud Devred;Stephan Russenschuck","doi":"10.1109/TASC.2025.3550313","DOIUrl":null,"url":null,"abstract":"An induction-coil magnetometer has been produced at CERN to determine the location of an incipient quench in the HL-LHC Nb<inline-formula><tex-math>$_{\\text{3}}$</tex-math></inline-formula>Sn inner-triplet quadrupoles. The instrument, known as a quench-antenna, allows the measurement of the position and propagation of quenches with a reduced number of acquisition channels. This is possible because four layers of nested coils are designed to be sensitive only to the normal and skew sextupole and octupole components. Moreover, the magnetometer allows the study of fast magnetic transients due to flux jumps observed during the ramping of Nb<inline-formula><tex-math>$_{\\text{3}}$</tex-math></inline-formula>Sn superconducting accelerator magnets. This paper presents the observation and characterization of flux jumps during powering ramps similar to machine operations. Spatial and temporal distributions of flux jumps are derived from the induced voltages in the quench-antenna as a function of the transport current. Modeling flux jumps as traveling magnetic moments allows the reconstruction of the effect in terms of position and magnitude and, thus, an estimation of the impact on the magnetic field quality.","PeriodicalId":13104,"journal":{"name":"IEEE Transactions on Applied Superconductivity","volume":"35 5","pages":"1-5"},"PeriodicalIF":1.7000,"publicationDate":"2025-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10921665","citationCount":"0","resultStr":"{\"title\":\"Measurement of Fast Transients in Nb3Sn Magnets by Using a Static Harmonic-Coil\",\"authors\":\"Piotr Rogacki;Lucio Fiscarelli;Arnaud Devred;Stephan Russenschuck\",\"doi\":\"10.1109/TASC.2025.3550313\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An induction-coil magnetometer has been produced at CERN to determine the location of an incipient quench in the HL-LHC Nb<inline-formula><tex-math>$_{\\\\text{3}}$</tex-math></inline-formula>Sn inner-triplet quadrupoles. The instrument, known as a quench-antenna, allows the measurement of the position and propagation of quenches with a reduced number of acquisition channels. This is possible because four layers of nested coils are designed to be sensitive only to the normal and skew sextupole and octupole components. Moreover, the magnetometer allows the study of fast magnetic transients due to flux jumps observed during the ramping of Nb<inline-formula><tex-math>$_{\\\\text{3}}$</tex-math></inline-formula>Sn superconducting accelerator magnets. This paper presents the observation and characterization of flux jumps during powering ramps similar to machine operations. Spatial and temporal distributions of flux jumps are derived from the induced voltages in the quench-antenna as a function of the transport current. Modeling flux jumps as traveling magnetic moments allows the reconstruction of the effect in terms of position and magnitude and, thus, an estimation of the impact on the magnetic field quality.\",\"PeriodicalId\":13104,\"journal\":{\"name\":\"IEEE Transactions on Applied Superconductivity\",\"volume\":\"35 5\",\"pages\":\"1-5\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2025-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10921665\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE Transactions on Applied Superconductivity\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://ieeexplore.ieee.org/document/10921665/\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE Transactions on Applied Superconductivity","FirstCategoryId":"101","ListUrlMain":"https://ieeexplore.ieee.org/document/10921665/","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

本文章由计算机程序翻译,如有差异,请以英文原文为准。
Measurement of Fast Transients in Nb3Sn Magnets by Using a Static Harmonic-Coil
An induction-coil magnetometer has been produced at CERN to determine the location of an incipient quench in the HL-LHC Nb$_{\text{3}}$Sn inner-triplet quadrupoles. The instrument, known as a quench-antenna, allows the measurement of the position and propagation of quenches with a reduced number of acquisition channels. This is possible because four layers of nested coils are designed to be sensitive only to the normal and skew sextupole and octupole components. Moreover, the magnetometer allows the study of fast magnetic transients due to flux jumps observed during the ramping of Nb$_{\text{3}}$Sn superconducting accelerator magnets. This paper presents the observation and characterization of flux jumps during powering ramps similar to machine operations. Spatial and temporal distributions of flux jumps are derived from the induced voltages in the quench-antenna as a function of the transport current. Modeling flux jumps as traveling magnetic moments allows the reconstruction of the effect in terms of position and magnitude and, thus, an estimation of the impact on the magnetic field quality.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
IEEE Transactions on Applied Superconductivity
IEEE Transactions on Applied Superconductivity 工程技术-工程:电子与电气
CiteScore
3.50
自引率
33.30%
发文量
650
审稿时长
2.3 months
期刊介绍: IEEE Transactions on Applied Superconductivity (TAS) contains articles on the applications of superconductivity and other relevant technology. Electronic applications include analog and digital circuits employing thin films and active devices such as Josephson junctions. Large scale applications include magnets for power applications such as motors and generators, for magnetic resonance, for accelerators, and cable applications such as power transmission.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信