高ZT纳米NdAgTeO热电材料中反键和声光耦合诱导低点阵热导率的理论研究

IF 5.5 2区 材料科学 Q2 MATERIALS SCIENCE, MULTIDISCIPLINARY
Shuwei Tang*, Zhiwei Zhang, Shulin Bai*, Da Wan, Peng Ai, Xiaodong Li, Pengfei Zhang, Yujie Bao and Yunzhuo Zhang, 
{"title":"高ZT纳米NdAgTeO热电材料中反键和声光耦合诱导低点阵热导率的理论研究","authors":"Shuwei Tang*,&nbsp;Zhiwei Zhang,&nbsp;Shulin Bai*,&nbsp;Da Wan,&nbsp;Peng Ai,&nbsp;Xiaodong Li,&nbsp;Pengfei Zhang,&nbsp;Yujie Bao and Yunzhuo Zhang,&nbsp;","doi":"10.1021/acsanm.4c0730210.1021/acsanm.4c07302","DOIUrl":null,"url":null,"abstract":"<p >The crystal structure, electronic properties, phonon transport, and thermoelectric (TE) properties of nanolayered NdAgTeO compound are assessed by utilizing the first-principles calculations and Boltzmann transport theory in the current work. Nanolayered NdAgTeO compound is a direct-bandgap semiconductor (1.30 eV) using the Perdew–Burke–Ernzerhof (PBE) functional in connection with the spin–orbit coupling (SOC) effect. The elastic modulus, <i>ab initio</i> molecular dynamics (AIMD) simulations, and phonon dispersion analysis confirm the high mechanical, thermal, and dynamic stabilities of the NdAgTeO compound. Due to the unique nanolayered structure, a significant anisotropy is discovered for the electronic and thermal transport properties of the NdAgTeO compound, and the multivalley properties in the conduction bands facilitate the decoupling between Seebeck coefficient and electrical conductivity. The antibonding state around the Fermi level and the strong acoustic–optical coupling within the low-frequency region favor the pronounced anharmonicity in the NdAgTeO compound, leading to the anisotropic lattice thermal conductivities of 2.76 and 0.76 W/mK in the directions of <i>a</i>- and <i>c</i>-axis, respectively, at 300 K. The electron–phonon decoupling contributes to the excellent TE properties of <i>n</i>-type NdAgTeO compound, which demonstrates large Seebeck coefficient and electrical conductivity, and ultimately culminating high power factor. Consequently, the optimal <i>ZT</i>s for <i>n</i>- and <i>p</i>-type NdAgTeO compounds reach 2.08 and 1.16 at 700 K, respectively, while in the directions of the <i>a</i>- and <i>c</i>-axis, the <i>ZT</i>s achieve 1.38 and 4.68 at equivalent temperature. The study not only offers profound discernment into the thermal and electronic transport characteristics of the NdAgTeO compound but also emphasizes the promising potential of nanolayered oxychalcogenide materials for TE applications.</p>","PeriodicalId":6,"journal":{"name":"ACS Applied Nano Materials","volume":"8 11","pages":"5543–5555 5543–5555"},"PeriodicalIF":5.5000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Theoretical Study of Low Lattice Thermal Conductivity Induced by Antibonding and Acoustic–Optical Coupling in Nanolayered NdAgTeO Thermoelectric Material with High ZT\",\"authors\":\"Shuwei Tang*,&nbsp;Zhiwei Zhang,&nbsp;Shulin Bai*,&nbsp;Da Wan,&nbsp;Peng Ai,&nbsp;Xiaodong Li,&nbsp;Pengfei Zhang,&nbsp;Yujie Bao and Yunzhuo Zhang,&nbsp;\",\"doi\":\"10.1021/acsanm.4c0730210.1021/acsanm.4c07302\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >The crystal structure, electronic properties, phonon transport, and thermoelectric (TE) properties of nanolayered NdAgTeO compound are assessed by utilizing the first-principles calculations and Boltzmann transport theory in the current work. Nanolayered NdAgTeO compound is a direct-bandgap semiconductor (1.30 eV) using the Perdew–Burke–Ernzerhof (PBE) functional in connection with the spin–orbit coupling (SOC) effect. The elastic modulus, <i>ab initio</i> molecular dynamics (AIMD) simulations, and phonon dispersion analysis confirm the high mechanical, thermal, and dynamic stabilities of the NdAgTeO compound. Due to the unique nanolayered structure, a significant anisotropy is discovered for the electronic and thermal transport properties of the NdAgTeO compound, and the multivalley properties in the conduction bands facilitate the decoupling between Seebeck coefficient and electrical conductivity. The antibonding state around the Fermi level and the strong acoustic–optical coupling within the low-frequency region favor the pronounced anharmonicity in the NdAgTeO compound, leading to the anisotropic lattice thermal conductivities of 2.76 and 0.76 W/mK in the directions of <i>a</i>- and <i>c</i>-axis, respectively, at 300 K. The electron–phonon decoupling contributes to the excellent TE properties of <i>n</i>-type NdAgTeO compound, which demonstrates large Seebeck coefficient and electrical conductivity, and ultimately culminating high power factor. Consequently, the optimal <i>ZT</i>s for <i>n</i>- and <i>p</i>-type NdAgTeO compounds reach 2.08 and 1.16 at 700 K, respectively, while in the directions of the <i>a</i>- and <i>c</i>-axis, the <i>ZT</i>s achieve 1.38 and 4.68 at equivalent temperature. The study not only offers profound discernment into the thermal and electronic transport characteristics of the NdAgTeO compound but also emphasizes the promising potential of nanolayered oxychalcogenide materials for TE applications.</p>\",\"PeriodicalId\":6,\"journal\":{\"name\":\"ACS Applied Nano Materials\",\"volume\":\"8 11\",\"pages\":\"5543–5555 5543–5555\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Applied Nano Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acsanm.4c07302\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Nano Materials","FirstCategoryId":"88","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acsanm.4c07302","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

利用第一性原理计算和玻尔兹曼输运理论对纳米层NdAgTeO化合物的晶体结构、电子性能、声子输运和热电性能进行了评价。纳米层NdAgTeO化合物是一种直接带隙半导体(1.30 eV),利用Perdew-Burke-Ernzerhof (PBE)泛函与自旋轨道耦合(SOC)效应。弹性模量、从头算分子动力学(AIMD)模拟和声子色散分析证实了NdAgTeO化合物具有较高的力学、热和动态稳定性。由于独特的纳米层状结构,发现了NdAgTeO化合物的电子和热输运性质具有显著的各向异性,并且导带中的多谷性质有助于塞贝克系数与电导率之间的解耦。在费米能级附近的反键态和低频区的强声光耦合有利于NdAgTeO化合物的明显非谐波性,导致300 K时a轴和c轴方向的各向异性晶格热导率分别为2.76和0.76 W/mK。电子-声子去耦使得n型NdAgTeO化合物具有优异的TE性能,具有较大的塞贝克系数和导电性,最终具有较高的功率因数。因此,在700 K时,n型和p型NdAgTeO化合物的最佳ZTs分别达到2.08和1.16,而在a轴和c轴方向,在相同温度下,ZTs分别达到1.38和4.68。该研究不仅对NdAgTeO化合物的热和电子输运特性提供了深刻的认识,而且强调了纳米层硫代氧材料在TE应用中的巨大潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Theoretical Study of Low Lattice Thermal Conductivity Induced by Antibonding and Acoustic–Optical Coupling in Nanolayered NdAgTeO Thermoelectric Material with High ZT

Theoretical Study of Low Lattice Thermal Conductivity Induced by Antibonding and Acoustic–Optical Coupling in Nanolayered NdAgTeO Thermoelectric Material with High ZT

The crystal structure, electronic properties, phonon transport, and thermoelectric (TE) properties of nanolayered NdAgTeO compound are assessed by utilizing the first-principles calculations and Boltzmann transport theory in the current work. Nanolayered NdAgTeO compound is a direct-bandgap semiconductor (1.30 eV) using the Perdew–Burke–Ernzerhof (PBE) functional in connection with the spin–orbit coupling (SOC) effect. The elastic modulus, ab initio molecular dynamics (AIMD) simulations, and phonon dispersion analysis confirm the high mechanical, thermal, and dynamic stabilities of the NdAgTeO compound. Due to the unique nanolayered structure, a significant anisotropy is discovered for the electronic and thermal transport properties of the NdAgTeO compound, and the multivalley properties in the conduction bands facilitate the decoupling between Seebeck coefficient and electrical conductivity. The antibonding state around the Fermi level and the strong acoustic–optical coupling within the low-frequency region favor the pronounced anharmonicity in the NdAgTeO compound, leading to the anisotropic lattice thermal conductivities of 2.76 and 0.76 W/mK in the directions of a- and c-axis, respectively, at 300 K. The electron–phonon decoupling contributes to the excellent TE properties of n-type NdAgTeO compound, which demonstrates large Seebeck coefficient and electrical conductivity, and ultimately culminating high power factor. Consequently, the optimal ZTs for n- and p-type NdAgTeO compounds reach 2.08 and 1.16 at 700 K, respectively, while in the directions of the a- and c-axis, the ZTs achieve 1.38 and 4.68 at equivalent temperature. The study not only offers profound discernment into the thermal and electronic transport characteristics of the NdAgTeO compound but also emphasizes the promising potential of nanolayered oxychalcogenide materials for TE applications.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
8.30
自引率
3.40%
发文量
1601
期刊介绍: ACS Applied Nano Materials is an interdisciplinary journal publishing original research covering all aspects of engineering, chemistry, physics and biology relevant to applications of nanomaterials. The journal is devoted to reports of new and original experimental and theoretical research of an applied nature that integrate knowledge in the areas of materials, engineering, physics, bioscience, and chemistry into important applications of nanomaterials.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信