用于低铱负荷质子交换膜水电解槽的高活性和耐用的氧化铱镍片

IF 13.1 1区 化学 Q1 CHEMISTRY, PHYSICAL
Sun Seo Jeon, Hyeseong Jeon, Jaewon Lee, Robert Haaring, Wonjae Lee, Jeonghyun Nam, Sung June Cho* and Hyunjoo Lee*, 
{"title":"用于低铱负荷质子交换膜水电解槽的高活性和耐用的氧化铱镍片","authors":"Sun Seo Jeon,&nbsp;Hyeseong Jeon,&nbsp;Jaewon Lee,&nbsp;Robert Haaring,&nbsp;Wonjae Lee,&nbsp;Jeonghyun Nam,&nbsp;Sung June Cho* and Hyunjoo Lee*,&nbsp;","doi":"10.1021/acscatal.5c0001410.1021/acscatal.5c00014","DOIUrl":null,"url":null,"abstract":"<p >Minimizing the use of iridium (Ir) in proton exchange membrane water electrolyzers (PEMWEs) is essential for hydrogen production without carbon emission. Herein, layered monoclinic iridium nickel oxide (IrNiO<sub><i>x</i></sub>) platelets were synthesized using the molten salt method and used for the oxygen evolution reaction (OER) in a PEMWE. The IrNiO<sub><i>x</i></sub> hexagonal platelets consist of the edge-sharing octahedral framework, in which Ni atoms replace Ir sites in the crystalline lattice. Thin IrNiO<sub><i>x</i></sub> platelets exhibited high OER activity with suppressed Ni dissolution from the bulk lattice in acidic media. When the platelets were applied in a membrane electrode assembly (MEA), they presented improved interconnectivity in the catalyst layer, facilitating electron transfer. Even at a low Ir loading of 0.2 mg<sub>Ir</sub> cm<sup>–2</sup>, the platelets presented good performance with an initial cell voltage of 1.70 V at a current density of 1 A cm<sup>–2</sup>. Despite the use of a Ti porous transport layer (PTL) without Pt coating, the PEMWE operated stably for 150 h, exceeding the performance achievable by commercial Ir oxide and rutile IrO<sub>2</sub>. When a Pt-coated Ti PTL was used, the PEMWE could be operated stably for 500 h. Incorporating earth-abundant transition metals into the Ir oxide lattice can be an effective way to minimize the use of Ir in PEMWEs.</p>","PeriodicalId":9,"journal":{"name":"ACS Catalysis ","volume":"15 6","pages":"4963–4974 4963–4974"},"PeriodicalIF":13.1000,"publicationDate":"2025-03-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Highly Active and Durable Iridium Nickel Oxide Platelets for a Proton Exchange Membrane Water Electrolyzer with Low Iridium Loading\",\"authors\":\"Sun Seo Jeon,&nbsp;Hyeseong Jeon,&nbsp;Jaewon Lee,&nbsp;Robert Haaring,&nbsp;Wonjae Lee,&nbsp;Jeonghyun Nam,&nbsp;Sung June Cho* and Hyunjoo Lee*,&nbsp;\",\"doi\":\"10.1021/acscatal.5c0001410.1021/acscatal.5c00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Minimizing the use of iridium (Ir) in proton exchange membrane water electrolyzers (PEMWEs) is essential for hydrogen production without carbon emission. Herein, layered monoclinic iridium nickel oxide (IrNiO<sub><i>x</i></sub>) platelets were synthesized using the molten salt method and used for the oxygen evolution reaction (OER) in a PEMWE. The IrNiO<sub><i>x</i></sub> hexagonal platelets consist of the edge-sharing octahedral framework, in which Ni atoms replace Ir sites in the crystalline lattice. Thin IrNiO<sub><i>x</i></sub> platelets exhibited high OER activity with suppressed Ni dissolution from the bulk lattice in acidic media. When the platelets were applied in a membrane electrode assembly (MEA), they presented improved interconnectivity in the catalyst layer, facilitating electron transfer. Even at a low Ir loading of 0.2 mg<sub>Ir</sub> cm<sup>–2</sup>, the platelets presented good performance with an initial cell voltage of 1.70 V at a current density of 1 A cm<sup>–2</sup>. Despite the use of a Ti porous transport layer (PTL) without Pt coating, the PEMWE operated stably for 150 h, exceeding the performance achievable by commercial Ir oxide and rutile IrO<sub>2</sub>. When a Pt-coated Ti PTL was used, the PEMWE could be operated stably for 500 h. Incorporating earth-abundant transition metals into the Ir oxide lattice can be an effective way to minimize the use of Ir in PEMWEs.</p>\",\"PeriodicalId\":9,\"journal\":{\"name\":\"ACS Catalysis \",\"volume\":\"15 6\",\"pages\":\"4963–4974 4963–4974\"},\"PeriodicalIF\":13.1000,\"publicationDate\":\"2025-03-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACS Catalysis \",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/acscatal.5c00014\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Catalysis ","FirstCategoryId":"92","ListUrlMain":"https://pubs.acs.org/doi/10.1021/acscatal.5c00014","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0

摘要

在质子交换膜水电解槽(PEMWEs)中尽量减少铱(Ir)的使用对于无碳排放的制氢至关重要。本文采用熔盐法合成了层状单斜向氧化铱镍(IrNiOx)薄片,并将其用于PEMWE中的析氧反应(OER)。IrNiOx六方薄片由共用边的八面体框架组成,其中Ni原子取代了晶格中的Ir位点。薄IrNiOx薄片在酸性介质中表现出较高的OER活性,抑制了Ni从体晶格中的溶解。当血小板应用于膜电极组件(MEA)时,它们在催化剂层中表现出更好的互连性,促进电子转移。即使在0.2 mir cm-2的低Ir负载下,血小板在1 a cm-2电流密度下的初始电池电压为1.70 V时也表现出良好的性能。尽管使用了没有铂涂层的Ti多孔传输层(PTL),但PEMWE稳定运行了150小时,超过了商用Ir氧化物和金红石IrO2所能达到的性能。当使用pt包覆的Ti PTL时,PEMWE可以稳定运行500小时。将地球上丰富的过渡金属加入到Ir氧化物晶格中可以有效地减少PEMWE中Ir的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Highly Active and Durable Iridium Nickel Oxide Platelets for a Proton Exchange Membrane Water Electrolyzer with Low Iridium Loading

Highly Active and Durable Iridium Nickel Oxide Platelets for a Proton Exchange Membrane Water Electrolyzer with Low Iridium Loading

Minimizing the use of iridium (Ir) in proton exchange membrane water electrolyzers (PEMWEs) is essential for hydrogen production without carbon emission. Herein, layered monoclinic iridium nickel oxide (IrNiOx) platelets were synthesized using the molten salt method and used for the oxygen evolution reaction (OER) in a PEMWE. The IrNiOx hexagonal platelets consist of the edge-sharing octahedral framework, in which Ni atoms replace Ir sites in the crystalline lattice. Thin IrNiOx platelets exhibited high OER activity with suppressed Ni dissolution from the bulk lattice in acidic media. When the platelets were applied in a membrane electrode assembly (MEA), they presented improved interconnectivity in the catalyst layer, facilitating electron transfer. Even at a low Ir loading of 0.2 mgIr cm–2, the platelets presented good performance with an initial cell voltage of 1.70 V at a current density of 1 A cm–2. Despite the use of a Ti porous transport layer (PTL) without Pt coating, the PEMWE operated stably for 150 h, exceeding the performance achievable by commercial Ir oxide and rutile IrO2. When a Pt-coated Ti PTL was used, the PEMWE could be operated stably for 500 h. Incorporating earth-abundant transition metals into the Ir oxide lattice can be an effective way to minimize the use of Ir in PEMWEs.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACS Catalysis
ACS Catalysis CHEMISTRY, PHYSICAL-
CiteScore
20.80
自引率
6.20%
发文量
1253
审稿时长
1.5 months
期刊介绍: ACS Catalysis is an esteemed journal that publishes original research in the fields of heterogeneous catalysis, molecular catalysis, and biocatalysis. It offers broad coverage across diverse areas such as life sciences, organometallics and synthesis, photochemistry and electrochemistry, drug discovery and synthesis, materials science, environmental protection, polymer discovery and synthesis, and energy and fuels. The scope of the journal is to showcase innovative work in various aspects of catalysis. This includes new reactions and novel synthetic approaches utilizing known catalysts, the discovery or modification of new catalysts, elucidation of catalytic mechanisms through cutting-edge investigations, practical enhancements of existing processes, as well as conceptual advances in the field. Contributions to ACS Catalysis can encompass both experimental and theoretical research focused on catalytic molecules, macromolecules, and materials that exhibit catalytic turnover.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信