制定针对甲基汞的战略以保护大米消费者

Wenli Tang,  and , Huan Zhong*, 
{"title":"制定针对甲基汞的战略以保护大米消费者","authors":"Wenli Tang,&nbsp; and ,&nbsp;Huan Zhong*,&nbsp;","doi":"10.1021/envhealth.4c0025710.1021/envhealth.4c00257","DOIUrl":null,"url":null,"abstract":"<p >Mitigating mercury (Hg) risk in the rice-paddy system is crucial for safeguarding food safety and human health, as rice is a main source of human exposure to neurotoxic methylmercury (MeHg). Current mitigation strategies predominantly focus on reducing the availability of inorganic Hg (IHg) for Hg methylation, achieved primarily through Hg emission control and <i>in situ</i> Hg immobilization. While these IHg-targeted approaches have effectively reduced MeHg bioaccumulation and subsequent human exposure, their efficacy is largely undermined by Hg transformations and fluctuating environmental conditions due to the complex and protracted pathway linking IHg from environmental sources to MeHg at the point of human exposure. In light of recent advancements in MeHg-related transformations, we emphasize the development of MeHg-targeted strategies to improve the overall efficiency of Hg risk management in rice-paddy systems. MeHg-targeted strategies include microbial regulation to diminish net MeHg production, facilitating MeHg demethylation in soils, and promoting the <i>in vivo</i> MeHg degradation within rice plants. Although these approaches are still in their nascent stages, they hold significant promise due to their potential high mitigation efficacy and reduced uncertainties, owing to the shorter pathway between MeHg production and human exposure. Integrating IHg- and MeHg-targeted strategies offers a comprehensive and synergistic approach, paving the way for more effective mitigation of human exposure to MeHg in rice-paddy systems.</p>","PeriodicalId":29795,"journal":{"name":"Environment & Health","volume":"3 3","pages":"213–217 213–217"},"PeriodicalIF":0.0000,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.acs.org/doi/epdf/10.1021/envhealth.4c00257","citationCount":"0","resultStr":"{\"title\":\"Developing Methylmercury-Targeted Strategies to Safeguard Rice Consumers\",\"authors\":\"Wenli Tang,&nbsp; and ,&nbsp;Huan Zhong*,&nbsp;\",\"doi\":\"10.1021/envhealth.4c0025710.1021/envhealth.4c00257\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Mitigating mercury (Hg) risk in the rice-paddy system is crucial for safeguarding food safety and human health, as rice is a main source of human exposure to neurotoxic methylmercury (MeHg). Current mitigation strategies predominantly focus on reducing the availability of inorganic Hg (IHg) for Hg methylation, achieved primarily through Hg emission control and <i>in situ</i> Hg immobilization. While these IHg-targeted approaches have effectively reduced MeHg bioaccumulation and subsequent human exposure, their efficacy is largely undermined by Hg transformations and fluctuating environmental conditions due to the complex and protracted pathway linking IHg from environmental sources to MeHg at the point of human exposure. In light of recent advancements in MeHg-related transformations, we emphasize the development of MeHg-targeted strategies to improve the overall efficiency of Hg risk management in rice-paddy systems. MeHg-targeted strategies include microbial regulation to diminish net MeHg production, facilitating MeHg demethylation in soils, and promoting the <i>in vivo</i> MeHg degradation within rice plants. Although these approaches are still in their nascent stages, they hold significant promise due to their potential high mitigation efficacy and reduced uncertainties, owing to the shorter pathway between MeHg production and human exposure. Integrating IHg- and MeHg-targeted strategies offers a comprehensive and synergistic approach, paving the way for more effective mitigation of human exposure to MeHg in rice-paddy systems.</p>\",\"PeriodicalId\":29795,\"journal\":{\"name\":\"Environment & Health\",\"volume\":\"3 3\",\"pages\":\"213–217 213–217\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-12-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.acs.org/doi/epdf/10.1021/envhealth.4c00257\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Environment & Health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://pubs.acs.org/doi/10.1021/envhealth.4c00257\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Environment & Health","FirstCategoryId":"1085","ListUrlMain":"https://pubs.acs.org/doi/10.1021/envhealth.4c00257","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于水稻是人类接触神经毒性甲基汞(MeHg)的主要来源,因此减轻水稻田系统中的汞(Hg)风险对于保障食品安全和人类健康至关重要。目前的缓解战略主要侧重于减少用于汞甲基化的无机汞(IHg)的可得性,主要通过控制汞排放和原位固定汞来实现。虽然这些以甲基汞为目标的方法有效地减少了甲基汞的生物积累和随后的人类暴露,但由于环境源的甲基汞与人类暴露点的甲基汞之间存在复杂而漫长的联系途径,因此汞的转化和环境条件的波动在很大程度上削弱了它们的功效。鉴于汞汞相关转化的最新进展,我们强调制定以汞汞为目标的战略,以提高水稻田系统汞风险管理的整体效率。以甲基汞为目标的策略包括微生物调控以减少甲基汞的净产量,促进土壤中甲基汞的去甲基化,以及促进水稻植株体内甲基汞的降解。虽然这些方法仍处于初级阶段,但由于其潜在的高缓解效果和减少的不确定性(由于甲基汞生产和人类接触之间的途径较短),它们具有重大的前景。综合针对甲基汞和甲基汞的战略提供了一种全面和协同的方法,为更有效地减少人类在稻田系统中接触甲基汞铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing Methylmercury-Targeted Strategies to Safeguard Rice Consumers

Mitigating mercury (Hg) risk in the rice-paddy system is crucial for safeguarding food safety and human health, as rice is a main source of human exposure to neurotoxic methylmercury (MeHg). Current mitigation strategies predominantly focus on reducing the availability of inorganic Hg (IHg) for Hg methylation, achieved primarily through Hg emission control and in situ Hg immobilization. While these IHg-targeted approaches have effectively reduced MeHg bioaccumulation and subsequent human exposure, their efficacy is largely undermined by Hg transformations and fluctuating environmental conditions due to the complex and protracted pathway linking IHg from environmental sources to MeHg at the point of human exposure. In light of recent advancements in MeHg-related transformations, we emphasize the development of MeHg-targeted strategies to improve the overall efficiency of Hg risk management in rice-paddy systems. MeHg-targeted strategies include microbial regulation to diminish net MeHg production, facilitating MeHg demethylation in soils, and promoting the in vivo MeHg degradation within rice plants. Although these approaches are still in their nascent stages, they hold significant promise due to their potential high mitigation efficacy and reduced uncertainties, owing to the shorter pathway between MeHg production and human exposure. Integrating IHg- and MeHg-targeted strategies offers a comprehensive and synergistic approach, paving the way for more effective mitigation of human exposure to MeHg in rice-paddy systems.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Environment & Health
Environment & Health 环境科学、健康科学-
自引率
0.00%
发文量
0
期刊介绍: Environment & Health a peer-reviewed open access journal is committed to exploring the relationship between the environment and human health.As a premier journal for multidisciplinary research Environment & Health reports the health consequences for individuals and communities of changing and hazardous environmental factors. In supporting the UN Sustainable Development Goals the journal aims to help formulate policies to create a healthier world.Topics of interest include but are not limited to:Air water and soil pollutionExposomicsEnvironmental epidemiologyInnovative analytical methodology and instrumentation (multi-omics non-target analysis effect-directed analysis high-throughput screening etc.)Environmental toxicology (endocrine disrupting effect neurotoxicity alternative toxicology computational toxicology epigenetic toxicology etc.)Environmental microbiology pathogen and environmental transmission mechanisms of diseasesEnvironmental modeling bioinformatics and artificial intelligenceEmerging contaminants (including plastics engineered nanomaterials etc.)Climate change and related health effectHealth impacts of energy evolution and carbon neutralizationFood and drinking water safetyOccupational exposure and medicineInnovations in environmental technologies for better healthPolicies and international relations concerned with environmental health
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信