IF 10.8 1区 环境科学与生态学 Q1 ENGINEERING, ENVIRONMENTAL
Yuhao Yan, Jiexia Cheng, Jie Gao, Yanna Liu, Haijiang Tian, Yaquan Liu, Xuehan Zheng, Guangxuan Wang, Jingtai Yao, Yun Ding, Aifeng Liu, Minghao Wang, Jing Zhao, Shunhao Wang, Chunzhen Shi, Li Zeng, Xinyue Yang, Hua Qin, Xiulan Zhao, Runzeng Liu, Liqun Chen, Guangbo Qu, Bing Yan, Guibin Jiang
{"title":"Exploring Environmental Behaviors and Health Impacts of Biodegradable Microplastics","authors":"Yuhao Yan, Jiexia Cheng, Jie Gao, Yanna Liu, Haijiang Tian, Yaquan Liu, Xuehan Zheng, Guangxuan Wang, Jingtai Yao, Yun Ding, Aifeng Liu, Minghao Wang, Jing Zhao, Shunhao Wang, Chunzhen Shi, Li Zeng, Xinyue Yang, Hua Qin, Xiulan Zhao, Runzeng Liu, Liqun Chen, Guangbo Qu, Bing Yan, Guibin Jiang","doi":"10.1021/acs.est.4c14716","DOIUrl":null,"url":null,"abstract":"Biodegradable plastics (BPs) are promoted as eco-friendly alternatives to conventional plastics. However, compared to conventional microplastics (MPs), they degrade rapidly into biodegradable microplastics (BMPs), which may lead to a more significant accumulation of BMPs in the environment. This review systematically compares BMPs and MPs, summarizes current knowledge on their environmental behaviors and impacts on ecosystems and human health, and offers recommendations for future research. BMPs are detected in water, sediments, indoor dust, food, marine organisms, and human samples. Compared to MPs, BMPs are more prone to environmental transformations, such as photodegradation and biodegradation, which results in a shorter migration distance across different matrices. Like MPs, BMPs can adsorb pollutants and transport them into organisms, enhancing toxicity and health risks through the Trojan horse effect. Studies indicate that BMPs may negatively impact terrestrial and aquatic ecosystems more than MPs by disrupting nutrient cycling and inhibiting plant and animal growth. <i>In vivo</i> and <i>in vitro</i> research also shows that BMP degradation products increase bioavailability, exacerbating neurotoxicity and overall toxicity. However, findings on BMPs’ environmental and health effects remain inconsistent. Further evaluation of the trade-offs between BMP risks and their biodegradability is needed to address these uncertainties.","PeriodicalId":36,"journal":{"name":"环境科学与技术","volume":"45 1","pages":""},"PeriodicalIF":10.8000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"环境科学与技术","FirstCategoryId":"1","ListUrlMain":"https://doi.org/10.1021/acs.est.4c14716","RegionNum":1,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0

摘要

生物降解塑料(BPs)作为传统塑料的生态友好型替代品而得到推广。然而,与传统微塑料(MPs)相比,生物降解塑料能迅速降解为生物可降解微塑料(BMPs),这可能会导致生物可降解微塑料在环境中的大量积累。本综述系统地比较了 BMP 和 MP,总结了目前有关其环境行为以及对生态系统和人类健康的影响的知识,并对未来的研究提出了建议。在水、沉积物、室内灰尘、食物、海洋生物和人体样本中都能检测到 BMP。与 MPs 相比,BMPs 更容易发生光降解和生物降解等环境转化,因此在不同基质中的迁移距离更短。与 MPs 一样,BMPs 可吸附污染物并将其迁移到生物体内,通过特洛伊木马效应增强毒性和健康风险。研究表明,BMP 比 MP 更能破坏营养循环,抑制动植物生长,从而对陆地和水生生态系统产生负面影响。体内和体外研究还表明,BMP 降解产物增加了生物利用率,加剧了神经毒性和整体毒性。然而,有关 BMP 对环境和健康影响的研究结果仍不一致。需要进一步评估 BMP 风险与其生物降解性之间的权衡,以解决这些不确定因素。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Exploring Environmental Behaviors and Health Impacts of Biodegradable Microplastics

Exploring Environmental Behaviors and Health Impacts of Biodegradable Microplastics
Biodegradable plastics (BPs) are promoted as eco-friendly alternatives to conventional plastics. However, compared to conventional microplastics (MPs), they degrade rapidly into biodegradable microplastics (BMPs), which may lead to a more significant accumulation of BMPs in the environment. This review systematically compares BMPs and MPs, summarizes current knowledge on their environmental behaviors and impacts on ecosystems and human health, and offers recommendations for future research. BMPs are detected in water, sediments, indoor dust, food, marine organisms, and human samples. Compared to MPs, BMPs are more prone to environmental transformations, such as photodegradation and biodegradation, which results in a shorter migration distance across different matrices. Like MPs, BMPs can adsorb pollutants and transport them into organisms, enhancing toxicity and health risks through the Trojan horse effect. Studies indicate that BMPs may negatively impact terrestrial and aquatic ecosystems more than MPs by disrupting nutrient cycling and inhibiting plant and animal growth. In vivo and in vitro research also shows that BMP degradation products increase bioavailability, exacerbating neurotoxicity and overall toxicity. However, findings on BMPs’ environmental and health effects remain inconsistent. Further evaluation of the trade-offs between BMP risks and their biodegradability is needed to address these uncertainties.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
环境科学与技术
环境科学与技术 环境科学-工程:环境
CiteScore
17.50
自引率
9.60%
发文量
12359
审稿时长
2.8 months
期刊介绍: Environmental Science & Technology (ES&T) is a co-sponsored academic and technical magazine by the Hubei Provincial Environmental Protection Bureau and the Hubei Provincial Academy of Environmental Sciences. Environmental Science & Technology (ES&T) holds the status of Chinese core journals, scientific papers source journals of China, Chinese Science Citation Database source journals, and Chinese Academic Journal Comprehensive Evaluation Database source journals. This publication focuses on the academic field of environmental protection, featuring articles related to environmental protection and technical advancements.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信