通过铝层修饰获得高亮度窄发射的绿色InP量子点

IF 4.7 2区 化学 Q1 CHEMISTRY, INORGANIC & NUCLEAR
Jin-Zhao Huang, Meng-Xin Li, Kai-Zheng Song, Wan-Ying Yao, Feng-Lei Jiang
{"title":"通过铝层修饰获得高亮度窄发射的绿色InP量子点","authors":"Jin-Zhao Huang, Meng-Xin Li, Kai-Zheng Song, Wan-Ying Yao, Feng-Lei Jiang","doi":"10.1021/acs.inorgchem.5c00148","DOIUrl":null,"url":null,"abstract":"InP quantum dots (QDs) show a unique promise for display and lighting applications. However, the synthesis of InP QDs with high optical quality is much more difficult compared to that of Cd-based QDs and Pb-based perovskites. Here, we established a layer-by-layer modification approach to improve the optical properties of the InP QDs. InP QDs with green emission were prepared using tris(dimethylamino)phosphine ((DMA)<sub>3</sub>P). By introducing aluminum isopropoxide (AIP) twice during the formation of the ZnSeS and ZnS shell layers, we increased the photoluminescence quantum yield (PLQY) of the resulting Al-modified InP/ZnSeS/ZnS QDs to 96%. The full-width-at-half-maximum (fwhm) could be narrowed to 37 nm. It was speculated that the introduction of Al could alleviate the charge mismatch between the cores and shells and passivate surface defects. In addition, AIP might form oxides on the outer layers of QDs, thus enhancing their stability. Moreover, the green light-emitting diode (LED) based on Al-modified InP/ZnSeS/ZnS QDs performed well with a maximum power efficiency of 28 lm/W. This work finds a way to obtain InP QDs of high brightness and narrow emission by modification in the midsynthetic process, which will inspire the synthesis of better InP QDs.","PeriodicalId":40,"journal":{"name":"Inorganic Chemistry","volume":"14 1","pages":""},"PeriodicalIF":4.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Green InP Quantum Dots with High Brightness and Narrow Emission through Layer-by-Layer Modification with Aluminum\",\"authors\":\"Jin-Zhao Huang, Meng-Xin Li, Kai-Zheng Song, Wan-Ying Yao, Feng-Lei Jiang\",\"doi\":\"10.1021/acs.inorgchem.5c00148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"InP quantum dots (QDs) show a unique promise for display and lighting applications. However, the synthesis of InP QDs with high optical quality is much more difficult compared to that of Cd-based QDs and Pb-based perovskites. Here, we established a layer-by-layer modification approach to improve the optical properties of the InP QDs. InP QDs with green emission were prepared using tris(dimethylamino)phosphine ((DMA)<sub>3</sub>P). By introducing aluminum isopropoxide (AIP) twice during the formation of the ZnSeS and ZnS shell layers, we increased the photoluminescence quantum yield (PLQY) of the resulting Al-modified InP/ZnSeS/ZnS QDs to 96%. The full-width-at-half-maximum (fwhm) could be narrowed to 37 nm. It was speculated that the introduction of Al could alleviate the charge mismatch between the cores and shells and passivate surface defects. In addition, AIP might form oxides on the outer layers of QDs, thus enhancing their stability. Moreover, the green light-emitting diode (LED) based on Al-modified InP/ZnSeS/ZnS QDs performed well with a maximum power efficiency of 28 lm/W. This work finds a way to obtain InP QDs of high brightness and narrow emission by modification in the midsynthetic process, which will inspire the synthesis of better InP QDs.\",\"PeriodicalId\":40,\"journal\":{\"name\":\"Inorganic Chemistry\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":4.7000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inorganic Chemistry\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://doi.org/10.1021/acs.inorgchem.5c00148\",\"RegionNum\":2,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, INORGANIC & NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inorganic Chemistry","FirstCategoryId":"92","ListUrlMain":"https://doi.org/10.1021/acs.inorgchem.5c00148","RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, INORGANIC & NUCLEAR","Score":null,"Total":0}
引用次数: 0

摘要

InP量子点(QDs)在显示和照明应用中显示出独特的前景。然而,与cd基量子点和pb基钙钛矿量子点相比,合成具有高光学质量的InP量子点要困难得多。在这里,我们建立了一种逐层修饰的方法来改善InP量子点的光学特性。用三(二甲胺)膦((DMA)3P)制备了具有绿色发光的InP量子点。通过在znse和ZnS壳层形成过程中两次引入异丙醇铝(AIP),我们将得到的al修饰的InP/ znse /ZnS量子点的光致发光量子产率(PLQY)提高到96%。半最大全宽(fwhm)可缩小至37 nm。推测Al的引入可以缓解芯壳之间的电荷不匹配和钝化表面缺陷。此外,AIP可能会在量子点外层形成氧化物,从而增强量子点的稳定性。此外,基于al修饰的InP/ZnSeS/ZnS量子点的绿色发光二极管(LED)表现良好,最大功率效率为28 lm/W。本工作找到了一种在合成过程中通过修饰获得高亮度、窄发射的InP量子点的方法,这将对更好的InP量子点的合成产生启发。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Green InP Quantum Dots with High Brightness and Narrow Emission through Layer-by-Layer Modification with Aluminum

Green InP Quantum Dots with High Brightness and Narrow Emission through Layer-by-Layer Modification with Aluminum
InP quantum dots (QDs) show a unique promise for display and lighting applications. However, the synthesis of InP QDs with high optical quality is much more difficult compared to that of Cd-based QDs and Pb-based perovskites. Here, we established a layer-by-layer modification approach to improve the optical properties of the InP QDs. InP QDs with green emission were prepared using tris(dimethylamino)phosphine ((DMA)3P). By introducing aluminum isopropoxide (AIP) twice during the formation of the ZnSeS and ZnS shell layers, we increased the photoluminescence quantum yield (PLQY) of the resulting Al-modified InP/ZnSeS/ZnS QDs to 96%. The full-width-at-half-maximum (fwhm) could be narrowed to 37 nm. It was speculated that the introduction of Al could alleviate the charge mismatch between the cores and shells and passivate surface defects. In addition, AIP might form oxides on the outer layers of QDs, thus enhancing their stability. Moreover, the green light-emitting diode (LED) based on Al-modified InP/ZnSeS/ZnS QDs performed well with a maximum power efficiency of 28 lm/W. This work finds a way to obtain InP QDs of high brightness and narrow emission by modification in the midsynthetic process, which will inspire the synthesis of better InP QDs.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Inorganic Chemistry
Inorganic Chemistry 化学-无机化学与核化学
CiteScore
7.60
自引率
13.00%
发文量
1960
审稿时长
1.9 months
期刊介绍: Inorganic Chemistry publishes fundamental studies in all phases of inorganic chemistry. Coverage includes experimental and theoretical reports on quantitative studies of structure and thermodynamics, kinetics, mechanisms of inorganic reactions, bioinorganic chemistry, and relevant aspects of organometallic chemistry, solid-state phenomena, and chemical bonding theory. Emphasis is placed on the synthesis, structure, thermodynamics, reactivity, spectroscopy, and bonding properties of significant new and known compounds.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信