利用全氟链装饰COFs开发低电阻离子迁移途径以提高锌电池的性能

IF 32.4 1区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Kun Zhang, Yijia Yuan, Gang Wang, Fangzheng Chen, Li Ma, Chao Wu, Jia Liu, Bao Zhang, Chenglin Li, Hongtian Liu, Changan Lu, Xing Li, Shibo Xi, Keyu Xie, Junhao Lin and Kian Ping Loh
{"title":"利用全氟链装饰COFs开发低电阻离子迁移途径以提高锌电池的性能","authors":"Kun Zhang, Yijia Yuan, Gang Wang, Fangzheng Chen, Li Ma, Chao Wu, Jia Liu, Bao Zhang, Chenglin Li, Hongtian Liu, Changan Lu, Xing Li, Shibo Xi, Keyu Xie, Junhao Lin and Kian Ping Loh","doi":"10.1039/D5EE00132C","DOIUrl":null,"url":null,"abstract":"<p >Rechargeable aqueous zinc metal-based batteries present a promising alternative to conventional lithium-ion batteries due to their lower operating potentials, higher capacities, intrinsic safety, cost-effectiveness, and environmental sustainability. However, the use of aqueous electrolyte in zinc metal-based batteries presents its own unique set of challenges, which include the tendency for side reactions during discharge that encourages dendritic growth on Zn anodes, as well as sluggish kinetics caused by the large solvation shell of divalent Zn ions. Nanoporous materials can be deployed as coating on Zn anodes for enhancing both their performance and stability, particularly in addressing challenges associated with water reactivity and ion migration kinetics. In our study, we incorporated superhydrophobic fluorine chains into covalent organic frameworks (SPCOFs) to engineer nanochannels that facilitate efficient ion migration pathways. Molecular dynamics simulations demonstrate that these superhydrophobic fluorine chains significantly reduce interactions between the electrolyte and nanochannel walls, altering the confined electrolyte distribution. This modification enables rapid dehydration, reduces ion migration resistance, and promotes dense Zn deposition. The use of SPCOFs enable Zn batteries with exceptional stability, achieving over 5000 hours of runtime at high current densities and stable cycling across 800 cycles in full-cell configurations. This approach highlights the critical role of tailored nanochannel environments in advancing the functionality and durability of zinc metal-based batteries, offering a scalable and environmentally friendly alternative to traditional battery technologies.</p>","PeriodicalId":72,"journal":{"name":"Energy & Environmental Science","volume":" 9","pages":" 4210-4221"},"PeriodicalIF":32.4000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://pubs.rsc.org/en/content/articlepdf/2025/ee/d5ee00132c?page=search","citationCount":"0","resultStr":"{\"title\":\"Developing low-resistance ion migration pathways using perfluorinated chain-decorated COFs for enhanced performance in zinc batteries†\",\"authors\":\"Kun Zhang, Yijia Yuan, Gang Wang, Fangzheng Chen, Li Ma, Chao Wu, Jia Liu, Bao Zhang, Chenglin Li, Hongtian Liu, Changan Lu, Xing Li, Shibo Xi, Keyu Xie, Junhao Lin and Kian Ping Loh\",\"doi\":\"10.1039/D5EE00132C\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p >Rechargeable aqueous zinc metal-based batteries present a promising alternative to conventional lithium-ion batteries due to their lower operating potentials, higher capacities, intrinsic safety, cost-effectiveness, and environmental sustainability. However, the use of aqueous electrolyte in zinc metal-based batteries presents its own unique set of challenges, which include the tendency for side reactions during discharge that encourages dendritic growth on Zn anodes, as well as sluggish kinetics caused by the large solvation shell of divalent Zn ions. Nanoporous materials can be deployed as coating on Zn anodes for enhancing both their performance and stability, particularly in addressing challenges associated with water reactivity and ion migration kinetics. In our study, we incorporated superhydrophobic fluorine chains into covalent organic frameworks (SPCOFs) to engineer nanochannels that facilitate efficient ion migration pathways. Molecular dynamics simulations demonstrate that these superhydrophobic fluorine chains significantly reduce interactions between the electrolyte and nanochannel walls, altering the confined electrolyte distribution. This modification enables rapid dehydration, reduces ion migration resistance, and promotes dense Zn deposition. The use of SPCOFs enable Zn batteries with exceptional stability, achieving over 5000 hours of runtime at high current densities and stable cycling across 800 cycles in full-cell configurations. This approach highlights the critical role of tailored nanochannel environments in advancing the functionality and durability of zinc metal-based batteries, offering a scalable and environmentally friendly alternative to traditional battery technologies.</p>\",\"PeriodicalId\":72,\"journal\":{\"name\":\"Energy & Environmental Science\",\"volume\":\" 9\",\"pages\":\" 4210-4221\"},\"PeriodicalIF\":32.4000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://pubs.rsc.org/en/content/articlepdf/2025/ee/d5ee00132c?page=search\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy & Environmental Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee00132c\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy & Environmental Science","FirstCategoryId":"88","ListUrlMain":"https://pubs.rsc.org/en/content/articlelanding/2025/ee/d5ee00132c","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

可充电水性锌金属基电池由于其更低的工作电位、更高的容量、固有的安全性、成本效益和环境可持续性,是传统锂离子电池的一个有前途的替代品。然而,在锌金属基电池中使用水电解质有其独特的挑战,包括在放电过程中产生副反应的趋势,促进锌阳极上枝晶的生长,以及由二价锌离子的大溶剂化壳引起的缓慢动力学。纳米多孔材料可以作为锌阳极的涂层,以提高其性能和稳定性,特别是在解决与水反应性和离子迁移动力学相关的挑战方面。在我们的研究中,我们将超疏水氟链纳入共价有机框架(SPCOFs)中,以设计纳米通道,促进有效的离子迁移途径。分子动力学模拟表明,这些超疏水氟链显著降低了电解质与纳米通道壁之间的相互作用,改变了受限电解质的分布。这种改性使快速脱水,减少离子迁移阻力,并促进致密锌沉积。SPCOFs的使用使锌电池具有卓越的稳定性,在高电流密度下可运行超过5000小时,在全电池配置下可稳定循环800次。这种方法强调了定制纳米通道环境在提高锌金属基电池的功能和耐用性方面的关键作用,为传统电池技术提供了一种可扩展和环保的替代方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Developing low-resistance ion migration pathways using perfluorinated chain-decorated COFs for enhanced performance in zinc batteries†

Rechargeable aqueous zinc metal-based batteries present a promising alternative to conventional lithium-ion batteries due to their lower operating potentials, higher capacities, intrinsic safety, cost-effectiveness, and environmental sustainability. However, the use of aqueous electrolyte in zinc metal-based batteries presents its own unique set of challenges, which include the tendency for side reactions during discharge that encourages dendritic growth on Zn anodes, as well as sluggish kinetics caused by the large solvation shell of divalent Zn ions. Nanoporous materials can be deployed as coating on Zn anodes for enhancing both their performance and stability, particularly in addressing challenges associated with water reactivity and ion migration kinetics. In our study, we incorporated superhydrophobic fluorine chains into covalent organic frameworks (SPCOFs) to engineer nanochannels that facilitate efficient ion migration pathways. Molecular dynamics simulations demonstrate that these superhydrophobic fluorine chains significantly reduce interactions between the electrolyte and nanochannel walls, altering the confined electrolyte distribution. This modification enables rapid dehydration, reduces ion migration resistance, and promotes dense Zn deposition. The use of SPCOFs enable Zn batteries with exceptional stability, achieving over 5000 hours of runtime at high current densities and stable cycling across 800 cycles in full-cell configurations. This approach highlights the critical role of tailored nanochannel environments in advancing the functionality and durability of zinc metal-based batteries, offering a scalable and environmentally friendly alternative to traditional battery technologies.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Energy & Environmental Science
Energy & Environmental Science 化学-工程:化工
CiteScore
50.50
自引率
2.20%
发文量
349
审稿时长
2.2 months
期刊介绍: Energy & Environmental Science, a peer-reviewed scientific journal, publishes original research and review articles covering interdisciplinary topics in the (bio)chemical and (bio)physical sciences, as well as chemical engineering disciplines. Published monthly by the Royal Society of Chemistry (RSC), a not-for-profit publisher, Energy & Environmental Science is recognized as a leading journal. It boasts an impressive impact factor of 8.500 as of 2009, ranking 8th among 140 journals in the category "Chemistry, Multidisciplinary," second among 71 journals in "Energy & Fuels," second among 128 journals in "Engineering, Chemical," and first among 181 scientific journals in "Environmental Sciences." Energy & Environmental Science publishes various types of articles, including Research Papers (original scientific work), Review Articles, Perspectives, and Minireviews (feature review-type articles of broad interest), Communications (original scientific work of an urgent nature), Opinions (personal, often speculative viewpoints or hypotheses on current topics), and Analysis Articles (in-depth examination of energy-related issues).
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信