生物启发光催化醇胺偶联的工程原子位点和质子转移微环境

IF 13 2区 材料科学 Q1 CHEMISTRY, MULTIDISCIPLINARY
Small Pub Date : 2025-03-21 DOI:10.1002/smll.202500253
Huimin Yi, Chenyi Wang, Baoxin Ge, Fangjie Xu, Pengyang Jiang, Min Zhou, Fangshu Xing, Caijin Huang
{"title":"生物启发光催化醇胺偶联的工程原子位点和质子转移微环境","authors":"Huimin Yi,&nbsp;Chenyi Wang,&nbsp;Baoxin Ge,&nbsp;Fangjie Xu,&nbsp;Pengyang Jiang,&nbsp;Min Zhou,&nbsp;Fangshu Xing,&nbsp;Caijin Huang","doi":"10.1002/smll.202500253","DOIUrl":null,"url":null,"abstract":"<p>Achieving a precise understanding and accurate design of heterogeneous catalysts based on bioinspired principles is challenging yet crucial to digging out optimal materials for artificial catalysis. Here, an ADH-mimicking dual-site photocatalyst (YCuCdS) is developed, and demonstrates the powerful effects of atomic site configuration and proton transfer environments on alcohol-amine coupling. Mechanism studies reveal that the alcohol substrate is effectively dehydrogenated at the Y sites, forming the carbonyl intermediates that rapidly experience condensation with the amine. Meanwhile, the released hydrogen species (H<sub>ads</sub>) migrate from adjacent Cu sites to active S atoms, promoting H<sub>2</sub> production and hindering the over-hydrogenation of imine. As a result, a high imine yield of 92% is achieved, along with an H<sub>2</sub> production rate of 7400 µmol g<sup>−1</sup> h<sup>−1</sup>. This work showcases an effective strategy for the design of heterogeneous catalysts with bioinspiration.</p>","PeriodicalId":228,"journal":{"name":"Small","volume":"21 18","pages":""},"PeriodicalIF":13.0000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Engineering Atomic Sites and Proton Transfer Microenvironments for Bioinspired Photocatalytic Alcohol-Amine Coupling\",\"authors\":\"Huimin Yi,&nbsp;Chenyi Wang,&nbsp;Baoxin Ge,&nbsp;Fangjie Xu,&nbsp;Pengyang Jiang,&nbsp;Min Zhou,&nbsp;Fangshu Xing,&nbsp;Caijin Huang\",\"doi\":\"10.1002/smll.202500253\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Achieving a precise understanding and accurate design of heterogeneous catalysts based on bioinspired principles is challenging yet crucial to digging out optimal materials for artificial catalysis. Here, an ADH-mimicking dual-site photocatalyst (YCuCdS) is developed, and demonstrates the powerful effects of atomic site configuration and proton transfer environments on alcohol-amine coupling. Mechanism studies reveal that the alcohol substrate is effectively dehydrogenated at the Y sites, forming the carbonyl intermediates that rapidly experience condensation with the amine. Meanwhile, the released hydrogen species (H<sub>ads</sub>) migrate from adjacent Cu sites to active S atoms, promoting H<sub>2</sub> production and hindering the over-hydrogenation of imine. As a result, a high imine yield of 92% is achieved, along with an H<sub>2</sub> production rate of 7400 µmol g<sup>−1</sup> h<sup>−1</sup>. This work showcases an effective strategy for the design of heterogeneous catalysts with bioinspiration.</p>\",\"PeriodicalId\":228,\"journal\":{\"name\":\"Small\",\"volume\":\"21 18\",\"pages\":\"\"},\"PeriodicalIF\":13.0000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Small\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500253\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Small","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/smll.202500253","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

实现基于生物启发原理的多相催化剂的精确理解和精确设计是具有挑战性的,但对于挖掘最佳的人工催化材料至关重要。本文开发了一种模拟adh的双位点光催化剂(YCuCdS),并证明了原子位构型和质子转移环境对醇胺偶联的强大影响。机理研究表明,醇底物在Y位点有效脱氢,形成羰基中间体,迅速与胺缩合。同时,释放的氢(Hads)从相邻的Cu位点迁移到活性的S原子上,促进H2的生成,阻碍亚胺的过氢化。结果表明,亚胺产率高达92%,H2产率为7400µmol g−1 h−1。这项工作展示了一种具有生物灵感的多相催化剂设计的有效策略。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Engineering Atomic Sites and Proton Transfer Microenvironments for Bioinspired Photocatalytic Alcohol-Amine Coupling

Engineering Atomic Sites and Proton Transfer Microenvironments for Bioinspired Photocatalytic Alcohol-Amine Coupling

Engineering Atomic Sites and Proton Transfer Microenvironments for Bioinspired Photocatalytic Alcohol-Amine Coupling

Achieving a precise understanding and accurate design of heterogeneous catalysts based on bioinspired principles is challenging yet crucial to digging out optimal materials for artificial catalysis. Here, an ADH-mimicking dual-site photocatalyst (YCuCdS) is developed, and demonstrates the powerful effects of atomic site configuration and proton transfer environments on alcohol-amine coupling. Mechanism studies reveal that the alcohol substrate is effectively dehydrogenated at the Y sites, forming the carbonyl intermediates that rapidly experience condensation with the amine. Meanwhile, the released hydrogen species (Hads) migrate from adjacent Cu sites to active S atoms, promoting H2 production and hindering the over-hydrogenation of imine. As a result, a high imine yield of 92% is achieved, along with an H2 production rate of 7400 µmol g−1 h−1. This work showcases an effective strategy for the design of heterogeneous catalysts with bioinspiration.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Small
Small 工程技术-材料科学:综合
CiteScore
17.70
自引率
3.80%
发文量
1830
审稿时长
2.1 months
期刊介绍: Small serves as an exceptional platform for both experimental and theoretical studies in fundamental and applied interdisciplinary research at the nano- and microscale. The journal offers a compelling mix of peer-reviewed Research Articles, Reviews, Perspectives, and Comments. With a remarkable 2022 Journal Impact Factor of 13.3 (Journal Citation Reports from Clarivate Analytics, 2023), Small remains among the top multidisciplinary journals, covering a wide range of topics at the interface of materials science, chemistry, physics, engineering, medicine, and biology. Small's readership includes biochemists, biologists, biomedical scientists, chemists, engineers, information technologists, materials scientists, physicists, and theoreticians alike.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信