Tianxing Kang , Haoyuan Liu , Jian Cai , Xingyi Feng , Zhongqiu Tong , Hanbo Zou , Wei Yang , Junmin Nan , Shengzhou Chen
{"title":"离子共价有机骨架电解质使钠离子向准固态钠电池快速扩散","authors":"Tianxing Kang , Haoyuan Liu , Jian Cai , Xingyi Feng , Zhongqiu Tong , Hanbo Zou , Wei Yang , Junmin Nan , Shengzhou Chen","doi":"10.1016/j.ensm.2025.104192","DOIUrl":null,"url":null,"abstract":"<div><div>Solid-state sodium batteries present a high potential for future energy technology due to their high safety and energy density. However, sluggish Na<sup>+</sup> transportation of solid-state electrolytes and serious Na dendrites hinder their further development. Herein, we propose a negatively charged-modified covalent organic framework (COF) with -SO<sub>3</sub>Na as a Na-ion quasi-solid-state electrolyte (QSSE-COF-SO<sub>3</sub>Na) for the first time to enhance the Na<sup>+</sup> transportation. Density functional theory calculations and molecular dynamics simulations prove that the nano-scale ion channels of the COF-SO<sub>3</sub>Na and the interaction between the -SO<sub>3</sub><sup>-</sup> and the anion PF<sub>6</sub><sup>-</sup> effectively enhance the Na<sup>+</sup> diffusion kinetics. The QSSE-COF-SO<sub>3</sub>Na exhibits a high ionic conductivity of 4.1 × 10<sup>–4</sup> S cm<sup>-1</sup> at room temperature and a high transference number of 0.89. Particularly, Na|QSSE-COF-SO<sub>3</sub>Na|Na symmetric cells show a stable Na plating/stripping process without Na dendrites over 1000 h and 800 h at 0.05 and 0.2 mA cm<sup>-2</sup>, respectively. Additionally, the QSSE-COF-SO<sub>3</sub>Na supports full cells, which respectively use NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, and NaFePO<sub>4</sub> as cathodes, to display good cycling stability and rate performance. This work highlights the novel strategy to develop the Na-ion quasi-solid-state devices.</div></div>","PeriodicalId":306,"journal":{"name":"Energy Storage Materials","volume":"77 ","pages":"Article 104192"},"PeriodicalIF":18.9000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ionic covalent organic frameworks-based electrolyte enables fast Na-ion diffusion towards quasi-solid-state sodium batteries\",\"authors\":\"Tianxing Kang , Haoyuan Liu , Jian Cai , Xingyi Feng , Zhongqiu Tong , Hanbo Zou , Wei Yang , Junmin Nan , Shengzhou Chen\",\"doi\":\"10.1016/j.ensm.2025.104192\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>Solid-state sodium batteries present a high potential for future energy technology due to their high safety and energy density. However, sluggish Na<sup>+</sup> transportation of solid-state electrolytes and serious Na dendrites hinder their further development. Herein, we propose a negatively charged-modified covalent organic framework (COF) with -SO<sub>3</sub>Na as a Na-ion quasi-solid-state electrolyte (QSSE-COF-SO<sub>3</sub>Na) for the first time to enhance the Na<sup>+</sup> transportation. Density functional theory calculations and molecular dynamics simulations prove that the nano-scale ion channels of the COF-SO<sub>3</sub>Na and the interaction between the -SO<sub>3</sub><sup>-</sup> and the anion PF<sub>6</sub><sup>-</sup> effectively enhance the Na<sup>+</sup> diffusion kinetics. The QSSE-COF-SO<sub>3</sub>Na exhibits a high ionic conductivity of 4.1 × 10<sup>–4</sup> S cm<sup>-1</sup> at room temperature and a high transference number of 0.89. Particularly, Na|QSSE-COF-SO<sub>3</sub>Na|Na symmetric cells show a stable Na plating/stripping process without Na dendrites over 1000 h and 800 h at 0.05 and 0.2 mA cm<sup>-2</sup>, respectively. Additionally, the QSSE-COF-SO<sub>3</sub>Na supports full cells, which respectively use NaTi<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, Na<sub>3</sub>V<sub>2</sub>(PO<sub>4</sub>)<sub>3</sub>, and NaFePO<sub>4</sub> as cathodes, to display good cycling stability and rate performance. This work highlights the novel strategy to develop the Na-ion quasi-solid-state devices.</div></div>\",\"PeriodicalId\":306,\"journal\":{\"name\":\"Energy Storage Materials\",\"volume\":\"77 \",\"pages\":\"Article 104192\"},\"PeriodicalIF\":18.9000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Energy Storage Materials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2405829725001928\",\"RegionNum\":1,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, PHYSICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Energy Storage Materials","FirstCategoryId":"88","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2405829725001928","RegionNum":1,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, PHYSICAL","Score":null,"Total":0}
引用次数: 0
摘要
固态钠电池由于其高安全性和能量密度,在未来的能源技术中具有很高的潜力。然而,固态电解质Na+输运缓慢和Na枝晶严重阻碍了它们的进一步发展。本文首次提出了一种带负电荷修饰的-SO3Na共价有机框架(COF)作为Na离子准固态电解质(QSSE-COF-SO3Na),以增强Na+的输运。密度泛函理论计算和分子动力学模拟证明,COF-SO3Na的纳米级离子通道以及- so3 -与阴离子PF6-的相互作用有效地增强了Na+的扩散动力学。QSSE-COF-SO3Na在室温下具有4.1 × 10-4 S cm-1的高离子电导率和0.89的高转移数。特别是,Na|QSSE-COF-SO3Na|Na对称细胞在0.05 mA cm-2和0.2 mA cm-2下分别在1000 h和800 h表现出稳定的无Na树突镀/剥离过程。此外,qse - cof - so3na支持全电池,分别以NaTi2(PO4)3、Na3V2(PO4)3和NaFePO4为阴极,具有良好的循环稳定性和速率性能。这项工作突出了开发钠离子准固态器件的新策略。
Ionic covalent organic frameworks-based electrolyte enables fast Na-ion diffusion towards quasi-solid-state sodium batteries
Solid-state sodium batteries present a high potential for future energy technology due to their high safety and energy density. However, sluggish Na+ transportation of solid-state electrolytes and serious Na dendrites hinder their further development. Herein, we propose a negatively charged-modified covalent organic framework (COF) with -SO3Na as a Na-ion quasi-solid-state electrolyte (QSSE-COF-SO3Na) for the first time to enhance the Na+ transportation. Density functional theory calculations and molecular dynamics simulations prove that the nano-scale ion channels of the COF-SO3Na and the interaction between the -SO3- and the anion PF6- effectively enhance the Na+ diffusion kinetics. The QSSE-COF-SO3Na exhibits a high ionic conductivity of 4.1 × 10–4 S cm-1 at room temperature and a high transference number of 0.89. Particularly, Na|QSSE-COF-SO3Na|Na symmetric cells show a stable Na plating/stripping process without Na dendrites over 1000 h and 800 h at 0.05 and 0.2 mA cm-2, respectively. Additionally, the QSSE-COF-SO3Na supports full cells, which respectively use NaTi2(PO4)3, Na3V2(PO4)3, and NaFePO4 as cathodes, to display good cycling stability and rate performance. This work highlights the novel strategy to develop the Na-ion quasi-solid-state devices.
期刊介绍:
Energy Storage Materials is a global interdisciplinary journal dedicated to sharing scientific and technological advancements in materials and devices for advanced energy storage and related energy conversion, such as in metal-O2 batteries. The journal features comprehensive research articles, including full papers and short communications, as well as authoritative feature articles and reviews by leading experts in the field.
Energy Storage Materials covers a wide range of topics, including the synthesis, fabrication, structure, properties, performance, and technological applications of energy storage materials. Additionally, the journal explores strategies, policies, and developments in the field of energy storage materials and devices for sustainable energy.
Published papers are selected based on their scientific and technological significance, their ability to provide valuable new knowledge, and their relevance to the international research community.