用呼吸孤子激光揭示阿诺德舌头的复杂性

IF 12.5 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Xiuqi Wu, Junsong Peng, Bo Yuan, Sonia Boscolo, Christophe Finot, Heping Zeng
{"title":"用呼吸孤子激光揭示阿诺德舌头的复杂性","authors":"Xiuqi Wu,&nbsp;Junsong Peng,&nbsp;Bo Yuan,&nbsp;Sonia Boscolo,&nbsp;Christophe Finot,&nbsp;Heping Zeng","doi":"10.1126/sciadv.ads3660","DOIUrl":null,"url":null,"abstract":"<div >Synchronization occurs ubiquitously in nature and science. The synchronization regions generally broaden monotonically with the strength of the forcing, thereby featuring a tongue-like shape in parameter space, known as Arnold’s tongue. Such a shape is universal, prevailing in many diverse synchronized systems. Theoretical studies suggest that, under strong external forcing, the shape of the synchronization regions can change substantially and even holes can appear in the solid patterns. However, experimentally accessing these abnormal regimes is quite challenging mainly because many real-world systems displaying synchronization become fragile under strong forcing. Here, we are able to observe these intriguing regimes in a breathing-soliton laser. Two types of abnormal synchronization regions are unveiled, namely, a leaf- and a ray-like shape. High-resolution control of the loss allows holes to be revealed in the synchronization regions. Our work opens the possibility to study intriguing synchronization dynamics using a simple breathing-soliton laser as a test bed.</div>","PeriodicalId":21609,"journal":{"name":"Science Advances","volume":"11 12","pages":""},"PeriodicalIF":12.5000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.science.org/doi/reader/10.1126/sciadv.ads3660","citationCount":"0","resultStr":"{\"title\":\"Unveiling the complexity of Arnold’s tongues in a breathing-soliton laser\",\"authors\":\"Xiuqi Wu,&nbsp;Junsong Peng,&nbsp;Bo Yuan,&nbsp;Sonia Boscolo,&nbsp;Christophe Finot,&nbsp;Heping Zeng\",\"doi\":\"10.1126/sciadv.ads3660\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div >Synchronization occurs ubiquitously in nature and science. The synchronization regions generally broaden monotonically with the strength of the forcing, thereby featuring a tongue-like shape in parameter space, known as Arnold’s tongue. Such a shape is universal, prevailing in many diverse synchronized systems. Theoretical studies suggest that, under strong external forcing, the shape of the synchronization regions can change substantially and even holes can appear in the solid patterns. However, experimentally accessing these abnormal regimes is quite challenging mainly because many real-world systems displaying synchronization become fragile under strong forcing. Here, we are able to observe these intriguing regimes in a breathing-soliton laser. Two types of abnormal synchronization regions are unveiled, namely, a leaf- and a ray-like shape. High-resolution control of the loss allows holes to be revealed in the synchronization regions. Our work opens the possibility to study intriguing synchronization dynamics using a simple breathing-soliton laser as a test bed.</div>\",\"PeriodicalId\":21609,\"journal\":{\"name\":\"Science Advances\",\"volume\":\"11 12\",\"pages\":\"\"},\"PeriodicalIF\":12.5000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.science.org/doi/reader/10.1126/sciadv.ads3660\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Science Advances\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://www.science.org/doi/10.1126/sciadv.ads3660\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Science Advances","FirstCategoryId":"103","ListUrlMain":"https://www.science.org/doi/10.1126/sciadv.ads3660","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

同步在自然界和科学中无处不在。同步区一般随强迫强度的增大而单调变宽,在参数空间上呈舌状,称为阿诺德舌。这种形状是普遍的,在许多不同的同步系统中盛行。理论研究表明,在强大的外力作用下,同步区的形状会发生很大的变化,甚至在实体图案中出现孔洞。然而,通过实验获得这些异常状态是相当具有挑战性的,主要是因为许多显示同步的现实世界系统在强强迫下变得脆弱。在这里,我们能够在呼吸孤子激光中观察到这些有趣的状态。揭示了两种类型的异常同步区,即叶状和射线状。对损耗的高分辨率控制允许在同步区域显示空穴。我们的工作开启了研究有趣的同步动力学的可能性,使用一个简单的呼吸孤子激光器作为试验台。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Unveiling the complexity of Arnold’s tongues in a breathing-soliton laser

Unveiling the complexity of Arnold’s tongues in a breathing-soliton laser
Synchronization occurs ubiquitously in nature and science. The synchronization regions generally broaden monotonically with the strength of the forcing, thereby featuring a tongue-like shape in parameter space, known as Arnold’s tongue. Such a shape is universal, prevailing in many diverse synchronized systems. Theoretical studies suggest that, under strong external forcing, the shape of the synchronization regions can change substantially and even holes can appear in the solid patterns. However, experimentally accessing these abnormal regimes is quite challenging mainly because many real-world systems displaying synchronization become fragile under strong forcing. Here, we are able to observe these intriguing regimes in a breathing-soliton laser. Two types of abnormal synchronization regions are unveiled, namely, a leaf- and a ray-like shape. High-resolution control of the loss allows holes to be revealed in the synchronization regions. Our work opens the possibility to study intriguing synchronization dynamics using a simple breathing-soliton laser as a test bed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Science Advances
Science Advances 综合性期刊-综合性期刊
CiteScore
21.40
自引率
1.50%
发文量
1937
审稿时长
29 weeks
期刊介绍: Science Advances, an open-access journal by AAAS, publishes impactful research in diverse scientific areas. It aims for fair, fast, and expert peer review, providing freely accessible research to readers. Led by distinguished scientists, the journal supports AAAS's mission by extending Science magazine's capacity to identify and promote significant advances. Evolving digital publishing technologies play a crucial role in advancing AAAS's global mission for science communication and benefitting humankind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信