通过低碳微生物制造重编程酵母代谢定制富淀粉微颗粒

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Zhihui Shi, Zhaoyu Xu, Weihe Rong, Hongbing Sun, Hongyi Zhou, Qianqian Yuan, Aixuan Xiao, Hongfei Ma, Tao Cai, Guokun Wang, Yanhe Ma
{"title":"通过低碳微生物制造重编程酵母代谢定制富淀粉微颗粒","authors":"Zhihui Shi, Zhaoyu Xu, Weihe Rong, Hongbing Sun, Hongyi Zhou, Qianqian Yuan, Aixuan Xiao, Hongfei Ma, Tao Cai, Guokun Wang, Yanhe Ma","doi":"10.1038/s41467-025-58067-z","DOIUrl":null,"url":null,"abstract":"<p>Starch is a primary food ingredient and industrial feedstock. Low-carbon microbial manufacturing offers a carbon-neutral/negative arable land-independent strategy for starch production. Here, we reconfigure the oleaginous yeast as a starch-rich micro-grain producer by rewiring the starch biosynthesis and gluconeogenesis pathways and regulating cell morphology. With the CO<sub>2</sub> electro-synthesized acetate as the substrate, the strain accumulates starch 47.18% of dry cell weight. The optimized system renders spatial-temporal starch productivity (243.7 g/m<sup>2</sup>/d) approximately 50-fold higher than crop cultivation and volumetric productivity (160.83 mg/L/h) over other microbial systems by an order of magnitude. We demonstrate tunable starch composition and starch-protein ratios via strain and process engineering. The engineered artificial strains adopt a cellular resources reallocation strategy to ensure high-level starch production in micro-grain and could facilitate a highly efficient straw/cellulose-to-starch conversion. This work elucidates starch biosynthesis machinery and establishes a superior-to-nature platform for customizable starch synthesis, advancing low-carbon nutritional manufacturing.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"15 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reprogramming yeast metabolism for customized starch-rich micro-grain through low-carbon microbial manufacturing\",\"authors\":\"Zhihui Shi, Zhaoyu Xu, Weihe Rong, Hongbing Sun, Hongyi Zhou, Qianqian Yuan, Aixuan Xiao, Hongfei Ma, Tao Cai, Guokun Wang, Yanhe Ma\",\"doi\":\"10.1038/s41467-025-58067-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Starch is a primary food ingredient and industrial feedstock. Low-carbon microbial manufacturing offers a carbon-neutral/negative arable land-independent strategy for starch production. Here, we reconfigure the oleaginous yeast as a starch-rich micro-grain producer by rewiring the starch biosynthesis and gluconeogenesis pathways and regulating cell morphology. With the CO<sub>2</sub> electro-synthesized acetate as the substrate, the strain accumulates starch 47.18% of dry cell weight. The optimized system renders spatial-temporal starch productivity (243.7 g/m<sup>2</sup>/d) approximately 50-fold higher than crop cultivation and volumetric productivity (160.83 mg/L/h) over other microbial systems by an order of magnitude. We demonstrate tunable starch composition and starch-protein ratios via strain and process engineering. The engineered artificial strains adopt a cellular resources reallocation strategy to ensure high-level starch production in micro-grain and could facilitate a highly efficient straw/cellulose-to-starch conversion. This work elucidates starch biosynthesis machinery and establishes a superior-to-nature platform for customizable starch synthesis, advancing low-carbon nutritional manufacturing.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"15 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58067-z\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58067-z","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

淀粉是一种主要的食品原料和工业原料。低碳微生物制造为淀粉生产提供了一种不依赖耕地的碳中和/负策略。在这里,我们通过重新连接淀粉生物合成和糖异生途径以及调节细胞形态,将产油酵母重新配置为富含淀粉的微颗粒生产者。以CO2电合成乙酸酯为底物,该菌株的淀粉积累量为干细胞重量的47.18%。优化后的系统的时空淀粉产量(243.7 g/m2/d)比作物栽培高约50倍,体积产量(160.83 mg/L/h)比其他微生物系统高一个数量级。我们通过菌株和工艺工程证明了可调的淀粉组成和淀粉-蛋白质比率。工程人工菌株采用细胞资源重新分配策略,以确保微粒中高水平的淀粉生产,并可以促进高效的秸秆/纤维素到淀粉的转化。本研究阐明了淀粉生物合成机制,建立了一个超自然的定制淀粉合成平台,推进低碳营养制造。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Reprogramming yeast metabolism for customized starch-rich micro-grain through low-carbon microbial manufacturing

Reprogramming yeast metabolism for customized starch-rich micro-grain through low-carbon microbial manufacturing

Starch is a primary food ingredient and industrial feedstock. Low-carbon microbial manufacturing offers a carbon-neutral/negative arable land-independent strategy for starch production. Here, we reconfigure the oleaginous yeast as a starch-rich micro-grain producer by rewiring the starch biosynthesis and gluconeogenesis pathways and regulating cell morphology. With the CO2 electro-synthesized acetate as the substrate, the strain accumulates starch 47.18% of dry cell weight. The optimized system renders spatial-temporal starch productivity (243.7 g/m2/d) approximately 50-fold higher than crop cultivation and volumetric productivity (160.83 mg/L/h) over other microbial systems by an order of magnitude. We demonstrate tunable starch composition and starch-protein ratios via strain and process engineering. The engineered artificial strains adopt a cellular resources reallocation strategy to ensure high-level starch production in micro-grain and could facilitate a highly efficient straw/cellulose-to-starch conversion. This work elucidates starch biosynthesis machinery and establishes a superior-to-nature platform for customizable starch synthesis, advancing low-carbon nutritional manufacturing.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信