非线性微生物热响应及其对土壤有机碳突变响应的影响

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Kailiang Yu, Lei He, Shuli Niu, Jinsong Wang, Pablo Garcia-palacios, Marina Dacal, Colin Averill, Katerina Georgiou, Jian-sheng Ye, Fei Mo, Lu Yang, Thomas W. Crowther
{"title":"非线性微生物热响应及其对土壤有机碳突变响应的影响","authors":"Kailiang Yu, Lei He, Shuli Niu, Jinsong Wang, Pablo Garcia-palacios, Marina Dacal, Colin Averill, Katerina Georgiou, Jian-sheng Ye, Fei Mo, Lu Yang, Thomas W. Crowther","doi":"10.1038/s41467-025-57900-9","DOIUrl":null,"url":null,"abstract":"<p>Microbial carbon use efficiency (CUE) is a key microbial trait affecting soil organic carbon (SOC) dynamics. However, we lack a unified and predictive understanding of the mechanisms underpinning the temperature response of microbial CUE, and, thus, its impacts on SOC storage in a warming world. Here, we leverage three independent soil datasets (<i>n</i> = 618 for microbial CUE; <i>n</i> = 591 and 660 for heterotrophic respiration) at broad spatial scales to investigate the microbial thermal response and its implications for SOC responses to warming. We show a nonlinear increase and decrease of CUE and heterotrophic respiration, respectively, in response to mean annual temperature (MAT), with a thermal threshold at ≈15 °C. These nonlinear relationships are mainly associated with changes in the fungal-to-bacterial biomass ratio. Our microbial-explicit SOC model predicts significant SOC losses at MAT above ≈15 °C due to increased CUE, total microbial biomass, and heterotrophic respiration, implying a potential abrupt transition to more vulnerable SOC under climate warming.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"92 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nonlinear microbial thermal response and its implications for abrupt soil organic carbon responses to warming\",\"authors\":\"Kailiang Yu, Lei He, Shuli Niu, Jinsong Wang, Pablo Garcia-palacios, Marina Dacal, Colin Averill, Katerina Georgiou, Jian-sheng Ye, Fei Mo, Lu Yang, Thomas W. Crowther\",\"doi\":\"10.1038/s41467-025-57900-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Microbial carbon use efficiency (CUE) is a key microbial trait affecting soil organic carbon (SOC) dynamics. However, we lack a unified and predictive understanding of the mechanisms underpinning the temperature response of microbial CUE, and, thus, its impacts on SOC storage in a warming world. Here, we leverage three independent soil datasets (<i>n</i> = 618 for microbial CUE; <i>n</i> = 591 and 660 for heterotrophic respiration) at broad spatial scales to investigate the microbial thermal response and its implications for SOC responses to warming. We show a nonlinear increase and decrease of CUE and heterotrophic respiration, respectively, in response to mean annual temperature (MAT), with a thermal threshold at ≈15 °C. These nonlinear relationships are mainly associated with changes in the fungal-to-bacterial biomass ratio. Our microbial-explicit SOC model predicts significant SOC losses at MAT above ≈15 °C due to increased CUE, total microbial biomass, and heterotrophic respiration, implying a potential abrupt transition to more vulnerable SOC under climate warming.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-57900-9\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-57900-9","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

微生物碳利用效率(CUE)是影响土壤有机碳动态的关键微生物性状。然而,我们对微生物CUE的温度响应机制以及其对全球变暖中有机碳储量的影响缺乏统一和预测性的理解。在这里,我们利用三个独立的土壤数据集(n = 618的微生物CUE;n = 591和660(异养呼吸),在广阔的空间尺度上研究微生物热响应及其对暖化SOC响应的影响。我们发现,CUE和异养呼吸分别随年平均温度(MAT)的非线性增加和减少,热阈值为≈15°C。这些非线性关系主要与真菌与细菌生物量比的变化有关。我们的微生物显式SOC模型预测,在MAT高于≈15°C时,由于CUE、总微生物生物量和异养呼吸的增加,SOC损失显著,这意味着气候变暖可能会突然转变为更脆弱的SOC。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Nonlinear microbial thermal response and its implications for abrupt soil organic carbon responses to warming

Nonlinear microbial thermal response and its implications for abrupt soil organic carbon responses to warming

Microbial carbon use efficiency (CUE) is a key microbial trait affecting soil organic carbon (SOC) dynamics. However, we lack a unified and predictive understanding of the mechanisms underpinning the temperature response of microbial CUE, and, thus, its impacts on SOC storage in a warming world. Here, we leverage three independent soil datasets (n = 618 for microbial CUE; n = 591 and 660 for heterotrophic respiration) at broad spatial scales to investigate the microbial thermal response and its implications for SOC responses to warming. We show a nonlinear increase and decrease of CUE and heterotrophic respiration, respectively, in response to mean annual temperature (MAT), with a thermal threshold at ≈15 °C. These nonlinear relationships are mainly associated with changes in the fungal-to-bacterial biomass ratio. Our microbial-explicit SOC model predicts significant SOC losses at MAT above ≈15 °C due to increased CUE, total microbial biomass, and heterotrophic respiration, implying a potential abrupt transition to more vulnerable SOC under climate warming.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信