平衡钙钛矿/有机串联太阳能电池互连层中的载流子输运

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Yidan An, Nan Zhang, Qi Liu, Wenlin Jiang, Gengxin Du, Desui Chen, Ming Liu, Xiaofeng Huang, Tingfeng Lei, Quanrun Qiu, Francis R. Lin, Xiao Cheng Zeng, Alex K.-Y. Jen, Hin-Lap Yip
{"title":"平衡钙钛矿/有机串联太阳能电池互连层中的载流子输运","authors":"Yidan An, Nan Zhang, Qi Liu, Wenlin Jiang, Gengxin Du, Desui Chen, Ming Liu, Xiaofeng Huang, Tingfeng Lei, Quanrun Qiu, Francis R. Lin, Xiao Cheng Zeng, Alex K.-Y. Jen, Hin-Lap Yip","doi":"10.1038/s41467-025-58047-3","DOIUrl":null,"url":null,"abstract":"<p>While individual perovskite and organic solar cells have demonstrated remarkable performance, achieving similar success in high-efficiency perovskite/organic tandem solar cells (TSCs) has been challenging, primarily due to large voltage deficits and severe non-radiative recombination. By exploring the fundamental mechanisms of carrier losses, we identify that imbalanced carrier transport, particularly inadequate hole transport in the organic subcell significantly limits the overall performance of perovskite/organic TSCs. Herein, we implement a hole transport self-assembled monolayer (SAM) anchored to MoO<sub>3</sub>, which converts the inherently n-type MoO<sub>3</sub> to a p-type surface. Further, a SAM/MoO<sub>3</sub>/SAM sandwich hole transport configuration is introduced, which significantly enhances hole extraction, facilitating a more balanced carrier transport, and markedly suppressing non-radiative recombination at the interconnection layer (ICL). The resulting perovskite/organic TSCs achieve a power conversion efficiency (PCE) of 26.05%, with an open-circuit voltage of 2.21 V (certified at 2.216 V) and enhanced operation stability.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"93 1","pages":""},"PeriodicalIF":15.7000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Balancing carrier transport in interconnection layer for efficient perovskite/organic tandem solar cells\",\"authors\":\"Yidan An, Nan Zhang, Qi Liu, Wenlin Jiang, Gengxin Du, Desui Chen, Ming Liu, Xiaofeng Huang, Tingfeng Lei, Quanrun Qiu, Francis R. Lin, Xiao Cheng Zeng, Alex K.-Y. Jen, Hin-Lap Yip\",\"doi\":\"10.1038/s41467-025-58047-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>While individual perovskite and organic solar cells have demonstrated remarkable performance, achieving similar success in high-efficiency perovskite/organic tandem solar cells (TSCs) has been challenging, primarily due to large voltage deficits and severe non-radiative recombination. By exploring the fundamental mechanisms of carrier losses, we identify that imbalanced carrier transport, particularly inadequate hole transport in the organic subcell significantly limits the overall performance of perovskite/organic TSCs. Herein, we implement a hole transport self-assembled monolayer (SAM) anchored to MoO<sub>3</sub>, which converts the inherently n-type MoO<sub>3</sub> to a p-type surface. Further, a SAM/MoO<sub>3</sub>/SAM sandwich hole transport configuration is introduced, which significantly enhances hole extraction, facilitating a more balanced carrier transport, and markedly suppressing non-radiative recombination at the interconnection layer (ICL). The resulting perovskite/organic TSCs achieve a power conversion efficiency (PCE) of 26.05%, with an open-circuit voltage of 2.21 V (certified at 2.216 V) and enhanced operation stability.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"93 1\",\"pages\":\"\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58047-3\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58047-3","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

虽然单个钙钛矿和有机太阳能电池已经表现出了卓越的性能,但在高效钙钛矿/有机串联太阳能电池(tsc)中取得类似的成功一直是一个挑战,主要是由于大的电压赤字和严重的非辐射复合。通过探索载流子损失的基本机制,我们发现载流子运输不平衡,特别是有机亚电池中空穴运输不足,极大地限制了钙钛矿/有机tsc的整体性能。在此,我们实现了一个固定在MoO3上的空穴传输自组装单层(SAM),它将固有的n型MoO3转化为p型表面。此外,引入了SAM/MoO3/SAM夹层空穴传输配置,该配置显著增强了空穴提取,促进了更平衡的载流子传输,并显著抑制了互连层(ICL)的非辐射复合。所得钙钛矿/有机TSCs的功率转换效率(PCE)为26.05%,开路电压为2.21 V(认证为2.216 V),工作稳定性增强。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Balancing carrier transport in interconnection layer for efficient perovskite/organic tandem solar cells

Balancing carrier transport in interconnection layer for efficient perovskite/organic tandem solar cells

While individual perovskite and organic solar cells have demonstrated remarkable performance, achieving similar success in high-efficiency perovskite/organic tandem solar cells (TSCs) has been challenging, primarily due to large voltage deficits and severe non-radiative recombination. By exploring the fundamental mechanisms of carrier losses, we identify that imbalanced carrier transport, particularly inadequate hole transport in the organic subcell significantly limits the overall performance of perovskite/organic TSCs. Herein, we implement a hole transport self-assembled monolayer (SAM) anchored to MoO3, which converts the inherently n-type MoO3 to a p-type surface. Further, a SAM/MoO3/SAM sandwich hole transport configuration is introduced, which significantly enhances hole extraction, facilitating a more balanced carrier transport, and markedly suppressing non-radiative recombination at the interconnection layer (ICL). The resulting perovskite/organic TSCs achieve a power conversion efficiency (PCE) of 26.05%, with an open-circuit voltage of 2.21 V (certified at 2.216 V) and enhanced operation stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信