Tiantian Yu, Wen Chen, Ping Huang, Gang Huang, Xianke Yang
{"title":"2000年代初以来ENSO对东亚夏季风影响减弱","authors":"Tiantian Yu, Wen Chen, Ping Huang, Gang Huang, Xianke Yang","doi":"10.1038/s41612-025-00983-4","DOIUrl":null,"url":null,"abstract":"<p>El Niño–Southern Oscillation (ENSO) was identified as the dominant factor influencing the East Asian summer monsoon (EASM), especially after the mid-1970s when the tropical Indian Ocean (TIO) response remarkably strengthened. Here, we find that the influence of ENSO on the EASM has been diminishing since the early 2000s. The EASM in wind anomalies associated with the positive phase of ENSO quickly disintegrates in August, changing from an anticyclone over the western North Pacific (WNPAC) to a cyclone over the western North Pacific (WNP), which exerts significant influence on the East Asia rainfall. These weakened EASM responses are closely linked to the changes in ENSO’s rate of decay around the early 2000s. During 1977–1999, ENSO events peaking in the boreal winter frequently display a gradual decay, triggering robust positive ocean–atmosphere feedback, which extends beyond the TIO and involves the WNP. The resultant North Indian Ocean (NIO) warming develops and persists through the decaying summer, maintaining the WNPAC in August. In contrast, ENSO events exhibit a faster decay during 2000–2022, leading to a weakened ENSO-induced TIO feedback. Additionally, the WNP warms up, accompanied by the collapse of the easterly wind response, contributing to the weak summer peak in the NIO. In turn, the weak NIO warming rapidly decays, which cannot sustain the WNPAC in August. This study emphasizes the crucial role of WNP air–sea coupling in the changing influences of ENSO on the EASM.</p>","PeriodicalId":19438,"journal":{"name":"npj Climate and Atmospheric Science","volume":"8 1","pages":""},"PeriodicalIF":8.5000,"publicationDate":"2025-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Weakened influence of ENSO on the East Asian summer monsoon since the early 2000s\",\"authors\":\"Tiantian Yu, Wen Chen, Ping Huang, Gang Huang, Xianke Yang\",\"doi\":\"10.1038/s41612-025-00983-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>El Niño–Southern Oscillation (ENSO) was identified as the dominant factor influencing the East Asian summer monsoon (EASM), especially after the mid-1970s when the tropical Indian Ocean (TIO) response remarkably strengthened. Here, we find that the influence of ENSO on the EASM has been diminishing since the early 2000s. The EASM in wind anomalies associated with the positive phase of ENSO quickly disintegrates in August, changing from an anticyclone over the western North Pacific (WNPAC) to a cyclone over the western North Pacific (WNP), which exerts significant influence on the East Asia rainfall. These weakened EASM responses are closely linked to the changes in ENSO’s rate of decay around the early 2000s. During 1977–1999, ENSO events peaking in the boreal winter frequently display a gradual decay, triggering robust positive ocean–atmosphere feedback, which extends beyond the TIO and involves the WNP. The resultant North Indian Ocean (NIO) warming develops and persists through the decaying summer, maintaining the WNPAC in August. In contrast, ENSO events exhibit a faster decay during 2000–2022, leading to a weakened ENSO-induced TIO feedback. Additionally, the WNP warms up, accompanied by the collapse of the easterly wind response, contributing to the weak summer peak in the NIO. In turn, the weak NIO warming rapidly decays, which cannot sustain the WNPAC in August. This study emphasizes the crucial role of WNP air–sea coupling in the changing influences of ENSO on the EASM.</p>\",\"PeriodicalId\":19438,\"journal\":{\"name\":\"npj Climate and Atmospheric Science\",\"volume\":\"8 1\",\"pages\":\"\"},\"PeriodicalIF\":8.5000,\"publicationDate\":\"2025-03-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"npj Climate and Atmospheric Science\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1038/s41612-025-00983-4\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"METEOROLOGY & ATMOSPHERIC SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"npj Climate and Atmospheric Science","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1038/s41612-025-00983-4","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"METEOROLOGY & ATMOSPHERIC SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
El Niño-Southern涛动(ENSO)是影响东亚夏季风(EASM)的主导因素,特别是在1970年代中期热带印度洋(TIO)响应显著增强之后。研究发现,自21世纪初以来,ENSO对东亚季风的影响逐渐减弱。8月,与ENSO正相相关的风异常中的EASM迅速解体,由北太平洋西部反气旋(WNPAC)转变为北太平洋西部气旋(WNP),对东亚降水产生显著影响。这些减弱的EASM响应与本世纪初ENSO衰减速率的变化密切相关。在1977-1999年期间,ENSO事件在北方冬季达到峰值,经常表现出逐渐衰减,引发强大的正海洋-大气反馈,这种反馈延伸到TIO之外并涉及WNP。由此产生的北印度洋(NIO)变暖发展并持续到整个夏季,维持了8月份的西北太平洋环流。相比之下,ENSO事件在2000-2022年期间表现出更快的衰减,导致ENSO诱导的TIO反馈减弱。此外,WNP变暖,伴随着东风响应的崩溃,导致NIO夏季弱峰值。反过来,微弱的NIO变暖迅速消退,这无法维持8月份的WNPAC。本研究强调了WNP海气耦合在ENSO对EASM影响变化中的关键作用。
Weakened influence of ENSO on the East Asian summer monsoon since the early 2000s
El Niño–Southern Oscillation (ENSO) was identified as the dominant factor influencing the East Asian summer monsoon (EASM), especially after the mid-1970s when the tropical Indian Ocean (TIO) response remarkably strengthened. Here, we find that the influence of ENSO on the EASM has been diminishing since the early 2000s. The EASM in wind anomalies associated with the positive phase of ENSO quickly disintegrates in August, changing from an anticyclone over the western North Pacific (WNPAC) to a cyclone over the western North Pacific (WNP), which exerts significant influence on the East Asia rainfall. These weakened EASM responses are closely linked to the changes in ENSO’s rate of decay around the early 2000s. During 1977–1999, ENSO events peaking in the boreal winter frequently display a gradual decay, triggering robust positive ocean–atmosphere feedback, which extends beyond the TIO and involves the WNP. The resultant North Indian Ocean (NIO) warming develops and persists through the decaying summer, maintaining the WNPAC in August. In contrast, ENSO events exhibit a faster decay during 2000–2022, leading to a weakened ENSO-induced TIO feedback. Additionally, the WNP warms up, accompanied by the collapse of the easterly wind response, contributing to the weak summer peak in the NIO. In turn, the weak NIO warming rapidly decays, which cannot sustain the WNPAC in August. This study emphasizes the crucial role of WNP air–sea coupling in the changing influences of ENSO on the EASM.
期刊介绍:
npj Climate and Atmospheric Science is an open-access journal encompassing the relevant physical, chemical, and biological aspects of atmospheric and climate science. The journal places particular emphasis on regional studies that unveil new insights into specific localities, including examinations of local atmospheric composition, such as aerosols.
The range of topics covered by the journal includes climate dynamics, climate variability, weather and climate prediction, climate change, ocean dynamics, weather extremes, air pollution, atmospheric chemistry (including aerosols), the hydrological cycle, and atmosphere–ocean and atmosphere–land interactions. The journal welcomes studies employing a diverse array of methods, including numerical and statistical modeling, the development and application of in situ observational techniques, remote sensing, and the development or evaluation of new reanalyses.