[特别是在医学和放射学中使用大型语言模型]。

Radiologie (Heidelberg, Germany) Pub Date : 2025-04-01 Epub Date: 2025-03-19 DOI:10.1007/s00117-025-01433-1
Alexander Herold, Christian J Herold, Elmar Kotter
{"title":"[特别是在医学和放射学中使用大型语言模型]。","authors":"Alexander Herold, Christian J Herold, Elmar Kotter","doi":"10.1007/s00117-025-01433-1","DOIUrl":null,"url":null,"abstract":"<p><strong>Background: </strong>The integration of Large Language Models (LLMs) into radiological practice offers promising opportunities to support reporting, workflow optimization, and clinical decision-making.</p><p><strong>Objective: </strong>To provide an exemplary demonstration of an LLM's self-reflection on the use of LLMs in radiology and a critical evaluation of their possibilities and limitations.</p><p><strong>Materials and methods: </strong>In this article, an LLM (Claude AI, Version 3.5 Sonnet AI Assistant, Anthropic, PBC) reflects on its own potential and limitations within the context of radiological practice. Claude was iteratively employed to analyze and systematically present relevant topics.</p><p><strong>Results: </strong>The utilized LLM demonstrates remarkable capabilities in generating structured content and identifying radiological applications. LLMs offer promising support but need to be used responsibly for radiological applications.</p><p><strong>Conclusion: </strong>LLMs such as Claude are powerful tools whose effectiveness depends on the user's ability to critically assess the generated content. Addressing ethical and practical challenges is essential to ensure a balance between technological assistance and medical autonomy. Future developments in generative AI, including potential singularity scenarios, require thoughtful and responsible application to maximize clinical benefits and minimize risks.</p>","PeriodicalId":74635,"journal":{"name":"Radiologie (Heidelberg, Germany)","volume":" ","pages":"257-265"},"PeriodicalIF":0.0000,"publicationDate":"2025-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"[The use of large language models in medicine and in radiology in particular].\",\"authors\":\"Alexander Herold, Christian J Herold, Elmar Kotter\",\"doi\":\"10.1007/s00117-025-01433-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Background: </strong>The integration of Large Language Models (LLMs) into radiological practice offers promising opportunities to support reporting, workflow optimization, and clinical decision-making.</p><p><strong>Objective: </strong>To provide an exemplary demonstration of an LLM's self-reflection on the use of LLMs in radiology and a critical evaluation of their possibilities and limitations.</p><p><strong>Materials and methods: </strong>In this article, an LLM (Claude AI, Version 3.5 Sonnet AI Assistant, Anthropic, PBC) reflects on its own potential and limitations within the context of radiological practice. Claude was iteratively employed to analyze and systematically present relevant topics.</p><p><strong>Results: </strong>The utilized LLM demonstrates remarkable capabilities in generating structured content and identifying radiological applications. LLMs offer promising support but need to be used responsibly for radiological applications.</p><p><strong>Conclusion: </strong>LLMs such as Claude are powerful tools whose effectiveness depends on the user's ability to critically assess the generated content. Addressing ethical and practical challenges is essential to ensure a balance between technological assistance and medical autonomy. Future developments in generative AI, including potential singularity scenarios, require thoughtful and responsible application to maximize clinical benefits and minimize risks.</p>\",\"PeriodicalId\":74635,\"journal\":{\"name\":\"Radiologie (Heidelberg, Germany)\",\"volume\":\" \",\"pages\":\"257-265\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Radiologie (Heidelberg, Germany)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1007/s00117-025-01433-1\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/19 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Radiologie (Heidelberg, Germany)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00117-025-01433-1","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/19 0:00:00","PubModel":"Epub","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

背景:将大型语言模型(LLMs)集成到放射实践中,为支持报告、工作流程优化和临床决策提供了有希望的机会。目的:提供法学硕士在放射学中使用法学硕士的自我反思的示范,并对其可能性和局限性进行批判性评估。材料和方法:在这篇文章中,一个法学硕士(克劳德人工智能,版本3.5十四行诗人工智能助手,Anthropic, PBC)在放射实践的背景下反思了其自身的潜力和局限性。采用Claude迭代法对相关主题进行分析和系统呈现。结果:所利用的LLM在生成结构化内容和识别放射学应用方面表现出卓越的能力。llm提供了有希望的支持,但需要负责任地用于放射应用。结论:像Claude这样的法学硕士是强大的工具,其有效性取决于用户批判性评估生成内容的能力。解决道德和实际挑战对于确保在技术援助和医疗自主之间取得平衡至关重要。生成式人工智能的未来发展,包括潜在的奇点场景,需要经过深思熟虑和负责任的应用,以最大限度地提高临床效益,最大限度地降低风险。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
[The use of large language models in medicine and in radiology in particular].

Background: The integration of Large Language Models (LLMs) into radiological practice offers promising opportunities to support reporting, workflow optimization, and clinical decision-making.

Objective: To provide an exemplary demonstration of an LLM's self-reflection on the use of LLMs in radiology and a critical evaluation of their possibilities and limitations.

Materials and methods: In this article, an LLM (Claude AI, Version 3.5 Sonnet AI Assistant, Anthropic, PBC) reflects on its own potential and limitations within the context of radiological practice. Claude was iteratively employed to analyze and systematically present relevant topics.

Results: The utilized LLM demonstrates remarkable capabilities in generating structured content and identifying radiological applications. LLMs offer promising support but need to be used responsibly for radiological applications.

Conclusion: LLMs such as Claude are powerful tools whose effectiveness depends on the user's ability to critically assess the generated content. Addressing ethical and practical challenges is essential to ensure a balance between technological assistance and medical autonomy. Future developments in generative AI, including potential singularity scenarios, require thoughtful and responsible application to maximize clinical benefits and minimize risks.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信