Matt T Oberdier, Luca Neri, Alessandro Orro, Richard T Carrick, Marco S Nobile, Sujai Jaipalli, Mariam Khan, Stefano Diciotti, Claudio Borghi, Henry R Halperin
{"title":"基于深度学习心电图分析的心脏骤停预测。","authors":"Matt T Oberdier, Luca Neri, Alessandro Orro, Richard T Carrick, Marco S Nobile, Sujai Jaipalli, Mariam Khan, Stefano Diciotti, Claudio Borghi, Henry R Halperin","doi":"10.1093/ehjdh/ztae088","DOIUrl":null,"url":null,"abstract":"<p><strong>Aims: </strong>Sudden cardiac arrest (SCA) is a commonly fatal event that often occurs without prior indications. To improve outcomes and enable preventative strategies, the electrocardiogram (ECG) in conjunction with deep learning was explored as a potential screening tool.</p><p><strong>Methods and results: </strong>A publicly available data set containing 10 s of 12-lead ECGs from individuals who did and did not have an SCA, information about time from ECG to arrest, and age and sex was utilized for analysis to individually predict SCA or not using deep convolution neural network models. The base model that included age and sex, ECGs within 1 day prior to arrest, and data sampled from windows of 720 ms around the R-waves from 221 individuals with SCA and 1046 controls had an area under the receiver operating characteristic curve of 0.77. With sensitivity set at 95%, base model specificity was 31%, which is not clinically applicable. Gradient-weighted class activation mapping showed that the model mostly relied on the QRS complex to make predictions. However, models with ECGs recorded between 1 day to 1 month and 1 month to 1 year prior to arrest demonstrated predictive capabilities.</p><p><strong>Conclusion: </strong>Deep learning models processing ECG data are a promising means of screening for SCA, and this method explains differences in SCAs due to age and sex. Model performance improved when ECGs were nearer in time to SCAs, although ECG data up to a year prior had predictive value. Sudden cardiac arrest prediction was more dependent upon QRS complex data compared to other ECG segments.</p>","PeriodicalId":72965,"journal":{"name":"European heart journal. Digital health","volume":"6 2","pages":"170-179"},"PeriodicalIF":3.9000,"publicationDate":"2025-02-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914729/pdf/","citationCount":"0","resultStr":"{\"title\":\"Sudden cardiac arrest prediction via deep learning electrocardiogram analysis.\",\"authors\":\"Matt T Oberdier, Luca Neri, Alessandro Orro, Richard T Carrick, Marco S Nobile, Sujai Jaipalli, Mariam Khan, Stefano Diciotti, Claudio Borghi, Henry R Halperin\",\"doi\":\"10.1093/ehjdh/ztae088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Aims: </strong>Sudden cardiac arrest (SCA) is a commonly fatal event that often occurs without prior indications. To improve outcomes and enable preventative strategies, the electrocardiogram (ECG) in conjunction with deep learning was explored as a potential screening tool.</p><p><strong>Methods and results: </strong>A publicly available data set containing 10 s of 12-lead ECGs from individuals who did and did not have an SCA, information about time from ECG to arrest, and age and sex was utilized for analysis to individually predict SCA or not using deep convolution neural network models. The base model that included age and sex, ECGs within 1 day prior to arrest, and data sampled from windows of 720 ms around the R-waves from 221 individuals with SCA and 1046 controls had an area under the receiver operating characteristic curve of 0.77. With sensitivity set at 95%, base model specificity was 31%, which is not clinically applicable. Gradient-weighted class activation mapping showed that the model mostly relied on the QRS complex to make predictions. However, models with ECGs recorded between 1 day to 1 month and 1 month to 1 year prior to arrest demonstrated predictive capabilities.</p><p><strong>Conclusion: </strong>Deep learning models processing ECG data are a promising means of screening for SCA, and this method explains differences in SCAs due to age and sex. Model performance improved when ECGs were nearer in time to SCAs, although ECG data up to a year prior had predictive value. Sudden cardiac arrest prediction was more dependent upon QRS complex data compared to other ECG segments.</p>\",\"PeriodicalId\":72965,\"journal\":{\"name\":\"European heart journal. Digital health\",\"volume\":\"6 2\",\"pages\":\"170-179\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-02-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914729/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"European heart journal. Digital health\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1093/ehjdh/ztae088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q1\",\"JCRName\":\"CARDIAC & CARDIOVASCULAR SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"European heart journal. Digital health","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/ehjdh/ztae088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/1 0:00:00","PubModel":"eCollection","JCR":"Q1","JCRName":"CARDIAC & CARDIOVASCULAR SYSTEMS","Score":null,"Total":0}
Sudden cardiac arrest prediction via deep learning electrocardiogram analysis.
Aims: Sudden cardiac arrest (SCA) is a commonly fatal event that often occurs without prior indications. To improve outcomes and enable preventative strategies, the electrocardiogram (ECG) in conjunction with deep learning was explored as a potential screening tool.
Methods and results: A publicly available data set containing 10 s of 12-lead ECGs from individuals who did and did not have an SCA, information about time from ECG to arrest, and age and sex was utilized for analysis to individually predict SCA or not using deep convolution neural network models. The base model that included age and sex, ECGs within 1 day prior to arrest, and data sampled from windows of 720 ms around the R-waves from 221 individuals with SCA and 1046 controls had an area under the receiver operating characteristic curve of 0.77. With sensitivity set at 95%, base model specificity was 31%, which is not clinically applicable. Gradient-weighted class activation mapping showed that the model mostly relied on the QRS complex to make predictions. However, models with ECGs recorded between 1 day to 1 month and 1 month to 1 year prior to arrest demonstrated predictive capabilities.
Conclusion: Deep learning models processing ECG data are a promising means of screening for SCA, and this method explains differences in SCAs due to age and sex. Model performance improved when ECGs were nearer in time to SCAs, although ECG data up to a year prior had predictive value. Sudden cardiac arrest prediction was more dependent upon QRS complex data compared to other ECG segments.