蝙蝠IRF7在激活抗病毒先天免疫中的保守功能:对蝙蝠先天免疫反应的见解。

IF 3.7 1区 农林科学 Q1 VETERINARY SCIENCES
Jie Wang, Qiuju Liu, Caixia Xu, Feiyu Fu, Qi Shao, Yapeng Fu, Zhaofei Wang, Jingjiao Ma, Hengan Wang, Yaxian Yan, Jianhe Sun, Yuqiang Cheng
{"title":"蝙蝠IRF7在激活抗病毒先天免疫中的保守功能:对蝙蝠先天免疫反应的见解。","authors":"Jie Wang, Qiuju Liu, Caixia Xu, Feiyu Fu, Qi Shao, Yapeng Fu, Zhaofei Wang, Jingjiao Ma, Hengan Wang, Yaxian Yan, Jianhe Sun, Yuqiang Cheng","doi":"10.1186/s13567-025-01490-3","DOIUrl":null,"url":null,"abstract":"<p><p>Bats are natural hosts for various highly pathogenic viruses, which pose a considerable threat to humans and animals. However, they rarely display signs of disease infection from these viruses. The expression of IRF7-induced IFN-β plays a crucial role in preventing viral infections. However, the role of bat IRF7 during viral infection remains unclear. In this study, we cloned Tadarida brasiliensis IRF7 and discovered that its amino acid sequence was poorly conserved among species. Next, we investigated the expression of bat IRF7 mRNA in Tadarida brasiliensis lung cells (TB 1 Lu) infected with RNA viruses such as Newcastle disease virus (NDV), avian influenza virus (AIV), vesicular stomatitis virus (VSV), and the double-stranded RNA (dsRNA) analogue poly (I:C) and demonstrated that these viral infections significantly upregulated the mRNA expression of bat IRF7. Furthermore, the overexpression of IRF7 in TB1 Lu cells activated the expression of bat innate immune-related genes and inhibited virus replication. Importantly, we observed that bat IRF7 function is highly conserved in avian and mammalian species. Structurally, we revealed that the IRF domain of bat IRF7 is essential for activating IFN-β. In summary, our findings indicate that bat IRF7 has a conserved ability to activate bat antiviral innate immunity. This study provides a theoretical foundation for further understanding the innate immune response in bats.</p>","PeriodicalId":23658,"journal":{"name":"Veterinary Research","volume":"56 1","pages":"59"},"PeriodicalIF":3.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921751/pdf/","citationCount":"0","resultStr":"{\"title\":\"Conserved function of bat IRF7 in activating antiviral innate immunity: insights into the innate immune response in bats.\",\"authors\":\"Jie Wang, Qiuju Liu, Caixia Xu, Feiyu Fu, Qi Shao, Yapeng Fu, Zhaofei Wang, Jingjiao Ma, Hengan Wang, Yaxian Yan, Jianhe Sun, Yuqiang Cheng\",\"doi\":\"10.1186/s13567-025-01490-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Bats are natural hosts for various highly pathogenic viruses, which pose a considerable threat to humans and animals. However, they rarely display signs of disease infection from these viruses. The expression of IRF7-induced IFN-β plays a crucial role in preventing viral infections. However, the role of bat IRF7 during viral infection remains unclear. In this study, we cloned Tadarida brasiliensis IRF7 and discovered that its amino acid sequence was poorly conserved among species. Next, we investigated the expression of bat IRF7 mRNA in Tadarida brasiliensis lung cells (TB 1 Lu) infected with RNA viruses such as Newcastle disease virus (NDV), avian influenza virus (AIV), vesicular stomatitis virus (VSV), and the double-stranded RNA (dsRNA) analogue poly (I:C) and demonstrated that these viral infections significantly upregulated the mRNA expression of bat IRF7. Furthermore, the overexpression of IRF7 in TB1 Lu cells activated the expression of bat innate immune-related genes and inhibited virus replication. Importantly, we observed that bat IRF7 function is highly conserved in avian and mammalian species. Structurally, we revealed that the IRF domain of bat IRF7 is essential for activating IFN-β. In summary, our findings indicate that bat IRF7 has a conserved ability to activate bat antiviral innate immunity. This study provides a theoretical foundation for further understanding the innate immune response in bats.</p>\",\"PeriodicalId\":23658,\"journal\":{\"name\":\"Veterinary Research\",\"volume\":\"56 1\",\"pages\":\"59\"},\"PeriodicalIF\":3.7000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11921751/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Veterinary Research\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://doi.org/10.1186/s13567-025-01490-3\",\"RegionNum\":1,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"VETERINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Veterinary Research","FirstCategoryId":"97","ListUrlMain":"https://doi.org/10.1186/s13567-025-01490-3","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"VETERINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

蝙蝠是各种高致病性病毒的天然宿主,这些病毒对人类和动物构成相当大的威胁。然而,他们很少表现出这些病毒感染的疾病迹象。irf7诱导的IFN-β表达在预防病毒感染中起着至关重要的作用。然而,蝙蝠IRF7在病毒感染中的作用尚不清楚。本研究克隆了Tadarida brasiliensis IRF7,发现其氨基酸序列在种间保守性较差。接下来,我们研究了在新城疫病毒(NDV)、禽流感病毒(AIV)、水疱性口炎病毒(VSV)和双链RNA (dsRNA)类似物poly (I:C)等RNA病毒感染的巴西塔达肺细胞(TB 1lu)中蝙蝠IRF7 mRNA的表达,发现这些病毒感染显著上调了蝙蝠IRF7 mRNA的表达。此外,IRF7在TB1 Lu细胞中的过表达激活了蝙蝠先天免疫相关基因的表达,抑制了病毒的复制。重要的是,我们观察到蝙蝠的IRF7功能在鸟类和哺乳动物物种中高度保守。在结构上,我们发现蝙蝠IRF7的IRF结构域对于激活IFN-β至关重要。总之,我们的研究结果表明,蝙蝠IRF7具有激活蝙蝠抗病毒先天免疫的保守能力。本研究为进一步了解蝙蝠的先天免疫反应提供了理论基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Conserved function of bat IRF7 in activating antiviral innate immunity: insights into the innate immune response in bats.

Bats are natural hosts for various highly pathogenic viruses, which pose a considerable threat to humans and animals. However, they rarely display signs of disease infection from these viruses. The expression of IRF7-induced IFN-β plays a crucial role in preventing viral infections. However, the role of bat IRF7 during viral infection remains unclear. In this study, we cloned Tadarida brasiliensis IRF7 and discovered that its amino acid sequence was poorly conserved among species. Next, we investigated the expression of bat IRF7 mRNA in Tadarida brasiliensis lung cells (TB 1 Lu) infected with RNA viruses such as Newcastle disease virus (NDV), avian influenza virus (AIV), vesicular stomatitis virus (VSV), and the double-stranded RNA (dsRNA) analogue poly (I:C) and demonstrated that these viral infections significantly upregulated the mRNA expression of bat IRF7. Furthermore, the overexpression of IRF7 in TB1 Lu cells activated the expression of bat innate immune-related genes and inhibited virus replication. Importantly, we observed that bat IRF7 function is highly conserved in avian and mammalian species. Structurally, we revealed that the IRF domain of bat IRF7 is essential for activating IFN-β. In summary, our findings indicate that bat IRF7 has a conserved ability to activate bat antiviral innate immunity. This study provides a theoretical foundation for further understanding the innate immune response in bats.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Veterinary Research
Veterinary Research 农林科学-兽医学
CiteScore
7.00
自引率
4.50%
发文量
92
审稿时长
3 months
期刊介绍: Veterinary Research is an open access journal that publishes high quality and novel research and review articles focusing on all aspects of infectious diseases and host-pathogen interaction in animals.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信