Xinyao Luo, Dingyuan Wan, Ke Wang, Yupei Li, Ruoxi Liao, Baihai Su
{"title":"[使用可解释机器学习模型预测心力衰竭合并急性肾损伤患者重症监护病房死亡率:一项回顾性队列研究]。","authors":"Xinyao Luo, Dingyuan Wan, Ke Wang, Yupei Li, Ruoxi Liao, Baihai Su","doi":"10.12182/20250160507","DOIUrl":null,"url":null,"abstract":"<p><strong>Objective: </strong>Heart failure (HF) complicated by acute kidney injury (AKI) significantly impacts patient outcomes, and it is crucial to make early predictions of short-term mortality. This study is focused on developing an interpretable machine learning model to enhance early prediction accuracy in such clinical scenarios.</p><p><strong>Methods: </strong>This retrospective cohort study utilized data from the Medical Information Mart for Intensive Care Ⅳ (MIMIC-Ⅳ, version 2.0) database. Data from the first 24 hours after admission to the ICU were extracted and divided into a training set (70%) and a validation set (30%). We utilized the SHapley Additive exPlanation (SHAP) method to interpret the workings of an extreme gradient boosting (XGBoost) model and identify key prognostic factors. The XGBoost model's predictive ability was evaluated against three other machine learning models using the area under the curve (AUC) metric, and its interpretation was enhanced using the SHAP method.</p><p><strong>Results: </strong>The study included 8028 patients with HF complicated by AKI. The XGBoost model outperformed the other models, achieving an AUC of 0.93 (95% confidence interval [CI]: 0.78-0.94; accuracy = 0.89), while neural network model showed the worst performance (AUC = 0.79, 95% CI: 0.77-0.82; accuracy = 0.82). Decision curve analysis showed the superior net benefit of the XGBoost model within the 9% to 60% threshold probabilities. SHAP analysis was performed to identify the top 20 predictors, with age (mean SHAP value 1.29) and Glasgow Coma Scale score (mean SHAP value 1.24) emerging as significant factors.</p><p><strong>Conclusions: </strong>Our interpretable model offers an enhanced ability to predict mortality risk in HF patients with AKI in ICUs. This model can be used to assist in formulating effective treatment plans and optimizing resource allocation.</p>","PeriodicalId":39321,"journal":{"name":"四川大学学报(医学版)","volume":"56 1","pages":"183-190"},"PeriodicalIF":0.0000,"publicationDate":"2025-01-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914016/pdf/","citationCount":"0","resultStr":"{\"title\":\"[Predicting Intensive Care Unit Mortality in Patients With Heart Failure Combined With Acute Kidney Injury Using an Interpretable Machine Learning Model: A Retrospective Cohort Study].\",\"authors\":\"Xinyao Luo, Dingyuan Wan, Ke Wang, Yupei Li, Ruoxi Liao, Baihai Su\",\"doi\":\"10.12182/20250160507\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Objective: </strong>Heart failure (HF) complicated by acute kidney injury (AKI) significantly impacts patient outcomes, and it is crucial to make early predictions of short-term mortality. This study is focused on developing an interpretable machine learning model to enhance early prediction accuracy in such clinical scenarios.</p><p><strong>Methods: </strong>This retrospective cohort study utilized data from the Medical Information Mart for Intensive Care Ⅳ (MIMIC-Ⅳ, version 2.0) database. Data from the first 24 hours after admission to the ICU were extracted and divided into a training set (70%) and a validation set (30%). We utilized the SHapley Additive exPlanation (SHAP) method to interpret the workings of an extreme gradient boosting (XGBoost) model and identify key prognostic factors. The XGBoost model's predictive ability was evaluated against three other machine learning models using the area under the curve (AUC) metric, and its interpretation was enhanced using the SHAP method.</p><p><strong>Results: </strong>The study included 8028 patients with HF complicated by AKI. The XGBoost model outperformed the other models, achieving an AUC of 0.93 (95% confidence interval [CI]: 0.78-0.94; accuracy = 0.89), while neural network model showed the worst performance (AUC = 0.79, 95% CI: 0.77-0.82; accuracy = 0.82). Decision curve analysis showed the superior net benefit of the XGBoost model within the 9% to 60% threshold probabilities. SHAP analysis was performed to identify the top 20 predictors, with age (mean SHAP value 1.29) and Glasgow Coma Scale score (mean SHAP value 1.24) emerging as significant factors.</p><p><strong>Conclusions: </strong>Our interpretable model offers an enhanced ability to predict mortality risk in HF patients with AKI in ICUs. This model can be used to assist in formulating effective treatment plans and optimizing resource allocation.</p>\",\"PeriodicalId\":39321,\"journal\":{\"name\":\"四川大学学报(医学版)\",\"volume\":\"56 1\",\"pages\":\"183-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2025-01-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11914016/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"四川大学学报(医学版)\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.12182/20250160507\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Medicine\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"四川大学学报(医学版)","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.12182/20250160507","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Medicine","Score":null,"Total":0}
[Predicting Intensive Care Unit Mortality in Patients With Heart Failure Combined With Acute Kidney Injury Using an Interpretable Machine Learning Model: A Retrospective Cohort Study].
Objective: Heart failure (HF) complicated by acute kidney injury (AKI) significantly impacts patient outcomes, and it is crucial to make early predictions of short-term mortality. This study is focused on developing an interpretable machine learning model to enhance early prediction accuracy in such clinical scenarios.
Methods: This retrospective cohort study utilized data from the Medical Information Mart for Intensive Care Ⅳ (MIMIC-Ⅳ, version 2.0) database. Data from the first 24 hours after admission to the ICU were extracted and divided into a training set (70%) and a validation set (30%). We utilized the SHapley Additive exPlanation (SHAP) method to interpret the workings of an extreme gradient boosting (XGBoost) model and identify key prognostic factors. The XGBoost model's predictive ability was evaluated against three other machine learning models using the area under the curve (AUC) metric, and its interpretation was enhanced using the SHAP method.
Results: The study included 8028 patients with HF complicated by AKI. The XGBoost model outperformed the other models, achieving an AUC of 0.93 (95% confidence interval [CI]: 0.78-0.94; accuracy = 0.89), while neural network model showed the worst performance (AUC = 0.79, 95% CI: 0.77-0.82; accuracy = 0.82). Decision curve analysis showed the superior net benefit of the XGBoost model within the 9% to 60% threshold probabilities. SHAP analysis was performed to identify the top 20 predictors, with age (mean SHAP value 1.29) and Glasgow Coma Scale score (mean SHAP value 1.24) emerging as significant factors.
Conclusions: Our interpretable model offers an enhanced ability to predict mortality risk in HF patients with AKI in ICUs. This model can be used to assist in formulating effective treatment plans and optimizing resource allocation.
四川大学学报(医学版)Biochemistry, Genetics and Molecular Biology-Molecular Biology
CiteScore
0.70
自引率
0.00%
发文量
8695
期刊介绍:
"Journal of Sichuan University (Medical Edition)" is a comprehensive medical academic journal sponsored by Sichuan University, a higher education institution directly under the Ministry of Education of the People's Republic of China. It was founded in 1959 and was originally named "Journal of Sichuan Medical College". In 1986, it was renamed "Journal of West China University of Medical Sciences". In 2003, it was renamed "Journal of Sichuan University (Medical Edition)" (bimonthly).
"Journal of Sichuan University (Medical Edition)" is a Chinese core journal and a Chinese authoritative academic journal (RCCSE). It is included in the retrieval systems such as China Science and Technology Papers and Citation Database (CSTPCD), China Science Citation Database (CSCD) (core version), Peking University Library's "Overview of Chinese Core Journals", the U.S. "Index Medica" (IM/Medline), the U.S. "PubMed Central" (PMC), the U.S. "Biological Abstracts" (BA), the U.S. "Chemical Abstracts" (CA), the U.S. EBSCO, the Netherlands "Abstracts and Citation Database" (Scopus), the Japan Science and Technology Agency Database (JST), the Russian "Abstract Magazine", the Chinese Biomedical Literature CD-ROM Database (CBMdisc), the Chinese Biomedical Periodical Literature Database (CMCC), the China Academic Journal Network Full-text Database (CNKI), the Chinese Academic Journal (CD-ROM Edition), and the Wanfang Data-Digital Journal Group.