Wenxin Liu, Shengbing Che, Wanqin Wang, Yafei Du, Yangzhuo Tuo, Zixuan Zhang
{"title":"基于[公式:见文]的遥感多图像超分辨率研究","authors":"Wenxin Liu, Shengbing Che, Wanqin Wang, Yafei Du, Yangzhuo Tuo, Zixuan Zhang","doi":"10.1038/s41598-025-93049-7","DOIUrl":null,"url":null,"abstract":"<p><p>Remote sensing images are essential in various fields, but their high-resolution (HR) acquisition is often limited by factors such as sensor resolution and high costs. To address this challenge, we propose the Multi-image Remote Sensing Super-Resolution with Enhanced Spatio-temporal Feature Interaction Fusion Network ([Formula: see text]N). This model is a deep neural network based on end-to-end. The main innovations of the [Formula: see text]N network model include the following aspects. Firstly, through the Attention-Based Feature Encoder (ABFE) module, the spatial features of low-resolution (LR) images are precisely extracted. Combined with the Channel Attention Block (CAB) module, global information guidance and weighting are provided for the input features, effectively strengthening the spatial feature extraction capability of ABFE. Secondly, in terms of temporal feature modeling, we designed the Residual Temporal Attention Block (RTAB). This module effectively weights k LR images of the same location captured at different times via a global residual temporal connection mechanism, fully exploiting their similarities and temporal dependencies, and enhancing the cross-layer information transmission. The ConvGRU-RTAB Fusion Module (CRFM) captures the temporal features using RTAB based on ABFE and fuses the spatial and temporal features. Finally, the Decoder module enlarges the resolution of the fused features to achieve high quality super resolution image reconstruction. The comparative experiment results show that our model achieves notable improvements in the cPSNR metric, with values of 49.69 dB and 51.57 dB in the NIR and RED bands of the PROBA-V dataset, respectively. The visual quality of the reconstructed images surpasses that of state-of-the-art methods, including TR-MISR and MAST etc.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9501"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923292/pdf/","citationCount":"0","resultStr":"{\"title\":\"Research on remote sensing multi-image super-resolution based on [Formula: see text]N.\",\"authors\":\"Wenxin Liu, Shengbing Che, Wanqin Wang, Yafei Du, Yangzhuo Tuo, Zixuan Zhang\",\"doi\":\"10.1038/s41598-025-93049-7\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Remote sensing images are essential in various fields, but their high-resolution (HR) acquisition is often limited by factors such as sensor resolution and high costs. To address this challenge, we propose the Multi-image Remote Sensing Super-Resolution with Enhanced Spatio-temporal Feature Interaction Fusion Network ([Formula: see text]N). This model is a deep neural network based on end-to-end. The main innovations of the [Formula: see text]N network model include the following aspects. Firstly, through the Attention-Based Feature Encoder (ABFE) module, the spatial features of low-resolution (LR) images are precisely extracted. Combined with the Channel Attention Block (CAB) module, global information guidance and weighting are provided for the input features, effectively strengthening the spatial feature extraction capability of ABFE. Secondly, in terms of temporal feature modeling, we designed the Residual Temporal Attention Block (RTAB). This module effectively weights k LR images of the same location captured at different times via a global residual temporal connection mechanism, fully exploiting their similarities and temporal dependencies, and enhancing the cross-layer information transmission. The ConvGRU-RTAB Fusion Module (CRFM) captures the temporal features using RTAB based on ABFE and fuses the spatial and temporal features. Finally, the Decoder module enlarges the resolution of the fused features to achieve high quality super resolution image reconstruction. The comparative experiment results show that our model achieves notable improvements in the cPSNR metric, with values of 49.69 dB and 51.57 dB in the NIR and RED bands of the PROBA-V dataset, respectively. The visual quality of the reconstructed images surpasses that of state-of-the-art methods, including TR-MISR and MAST etc.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9501\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923292/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-93049-7\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93049-7","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Research on remote sensing multi-image super-resolution based on [Formula: see text]N.
Remote sensing images are essential in various fields, but their high-resolution (HR) acquisition is often limited by factors such as sensor resolution and high costs. To address this challenge, we propose the Multi-image Remote Sensing Super-Resolution with Enhanced Spatio-temporal Feature Interaction Fusion Network ([Formula: see text]N). This model is a deep neural network based on end-to-end. The main innovations of the [Formula: see text]N network model include the following aspects. Firstly, through the Attention-Based Feature Encoder (ABFE) module, the spatial features of low-resolution (LR) images are precisely extracted. Combined with the Channel Attention Block (CAB) module, global information guidance and weighting are provided for the input features, effectively strengthening the spatial feature extraction capability of ABFE. Secondly, in terms of temporal feature modeling, we designed the Residual Temporal Attention Block (RTAB). This module effectively weights k LR images of the same location captured at different times via a global residual temporal connection mechanism, fully exploiting their similarities and temporal dependencies, and enhancing the cross-layer information transmission. The ConvGRU-RTAB Fusion Module (CRFM) captures the temporal features using RTAB based on ABFE and fuses the spatial and temporal features. Finally, the Decoder module enlarges the resolution of the fused features to achieve high quality super resolution image reconstruction. The comparative experiment results show that our model achieves notable improvements in the cPSNR metric, with values of 49.69 dB and 51.57 dB in the NIR and RED bands of the PROBA-V dataset, respectively. The visual quality of the reconstructed images surpasses that of state-of-the-art methods, including TR-MISR and MAST etc.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.