车载Ad-Hoc网络多云环境下资源分配模型的改进新颖方法。

IF 3.9 2区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
R Augustian Isaac, P Sundaravadivel, V S Nici Marx, G Priyanga
{"title":"车载Ad-Hoc网络多云环境下资源分配模型的改进新颖方法。","authors":"R Augustian Isaac, P Sundaravadivel, V S Nici Marx, G Priyanga","doi":"10.1038/s41598-025-93365-y","DOIUrl":null,"url":null,"abstract":"<p><p>As the number of service requests for applications continues increasing due to various conditions, the limitations on the number of resources provide a barrier in providing the applications with the appropriate Quality of Service (QoS) assurances. As a result, an efficient scheduling mechanism is required to determine the order of handling application requests, as well as the appropriate use of a broadcast media and data transfer. In this paper an innovative approach, incorporating the Crossover and Mutation (CM)-centered Marine Predator Algorithm (MPA) is introduced for an effective resource allocation. This strategic resource allocation optimally schedules resources within the Vehicular Edge computing (VEC) network, ensuring the most efficient utilization. The proposed method begins by the meticulous feature extraction from the Vehicular network model, with attributes such as mobility patterns, transmission medium, bandwidth, storage capacity, and packet delivery ratio. For further analysis the Elephant Herding Lion Optimizer (EHLO) algorithm is employed to pinpoint the most critical attributes. Subsequently the Modified Fuzzy C-Means (MFCM) algorithm is used for efficient vehicle clustering centred on selected attributes. These clustered vehicle characteristics are then transferred and stored within the cloud server infrastructure. The performance of the proposed methodology is evaluated using MATLAB software using simulation method. This study offers a comprehensive solution to the resource allocation challenge in Vehicular Cloud Networks, addresses the burgeoning demands of modern applications while ensuring QoS assurances and signifies a significant advancement in the field of VEC.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9472"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923080/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced novelty approaches for resource allocation model for multi-cloud environment in vehicular Ad-Hoc networks.\",\"authors\":\"R Augustian Isaac, P Sundaravadivel, V S Nici Marx, G Priyanga\",\"doi\":\"10.1038/s41598-025-93365-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the number of service requests for applications continues increasing due to various conditions, the limitations on the number of resources provide a barrier in providing the applications with the appropriate Quality of Service (QoS) assurances. As a result, an efficient scheduling mechanism is required to determine the order of handling application requests, as well as the appropriate use of a broadcast media and data transfer. In this paper an innovative approach, incorporating the Crossover and Mutation (CM)-centered Marine Predator Algorithm (MPA) is introduced for an effective resource allocation. This strategic resource allocation optimally schedules resources within the Vehicular Edge computing (VEC) network, ensuring the most efficient utilization. The proposed method begins by the meticulous feature extraction from the Vehicular network model, with attributes such as mobility patterns, transmission medium, bandwidth, storage capacity, and packet delivery ratio. For further analysis the Elephant Herding Lion Optimizer (EHLO) algorithm is employed to pinpoint the most critical attributes. Subsequently the Modified Fuzzy C-Means (MFCM) algorithm is used for efficient vehicle clustering centred on selected attributes. These clustered vehicle characteristics are then transferred and stored within the cloud server infrastructure. The performance of the proposed methodology is evaluated using MATLAB software using simulation method. This study offers a comprehensive solution to the resource allocation challenge in Vehicular Cloud Networks, addresses the burgeoning demands of modern applications while ensuring QoS assurances and signifies a significant advancement in the field of VEC.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9472\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923080/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-93365-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93365-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

由于各种情况,应用程序的服务请求数量不断增加,对资源数量的限制为向应用程序提供适当的服务质量(QoS)保证提供了障碍。因此,需要一种有效的调度机制来确定处理应用程序请求的顺序,以及广播媒体和数据传输的适当使用。本文提出了一种以交叉和变异(CM)为中心的海洋捕食者算法(MPA)来实现资源的有效分配。这种战略性资源分配优化调度车辆边缘计算(VEC)网络中的资源,确保最有效的利用。该方法首先从车辆网络模型中细致地提取特征,包括移动模式、传输介质、带宽、存储容量和分组传输率等属性。为了进一步分析,使用大象放牧狮子优化器(EHLO)算法来确定最关键的属性。随后,采用改进的模糊c均值(MFCM)算法,以选定的属性为中心进行高效的车辆聚类。然后将这些集群车辆特征传输并存储在云服务器基础设施中。利用MATLAB软件对该方法的性能进行了仿真评估。该研究为车载云网络中的资源分配挑战提供了一个全面的解决方案,在保证QoS保证的同时,满足了现代应用日益增长的需求,标志着VEC领域的重大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Enhanced novelty approaches for resource allocation model for multi-cloud environment in vehicular Ad-Hoc networks.

Enhanced novelty approaches for resource allocation model for multi-cloud environment in vehicular Ad-Hoc networks.

Enhanced novelty approaches for resource allocation model for multi-cloud environment in vehicular Ad-Hoc networks.

Enhanced novelty approaches for resource allocation model for multi-cloud environment in vehicular Ad-Hoc networks.

As the number of service requests for applications continues increasing due to various conditions, the limitations on the number of resources provide a barrier in providing the applications with the appropriate Quality of Service (QoS) assurances. As a result, an efficient scheduling mechanism is required to determine the order of handling application requests, as well as the appropriate use of a broadcast media and data transfer. In this paper an innovative approach, incorporating the Crossover and Mutation (CM)-centered Marine Predator Algorithm (MPA) is introduced for an effective resource allocation. This strategic resource allocation optimally schedules resources within the Vehicular Edge computing (VEC) network, ensuring the most efficient utilization. The proposed method begins by the meticulous feature extraction from the Vehicular network model, with attributes such as mobility patterns, transmission medium, bandwidth, storage capacity, and packet delivery ratio. For further analysis the Elephant Herding Lion Optimizer (EHLO) algorithm is employed to pinpoint the most critical attributes. Subsequently the Modified Fuzzy C-Means (MFCM) algorithm is used for efficient vehicle clustering centred on selected attributes. These clustered vehicle characteristics are then transferred and stored within the cloud server infrastructure. The performance of the proposed methodology is evaluated using MATLAB software using simulation method. This study offers a comprehensive solution to the resource allocation challenge in Vehicular Cloud Networks, addresses the burgeoning demands of modern applications while ensuring QoS assurances and signifies a significant advancement in the field of VEC.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Scientific Reports
Scientific Reports Natural Science Disciplines-
CiteScore
7.50
自引率
4.30%
发文量
19567
审稿时长
3.9 months
期刊介绍: We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections. Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021). •Engineering Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live. •Physical sciences Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics. •Earth and environmental sciences Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems. •Biological sciences Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants. •Health sciences The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信