R Augustian Isaac, P Sundaravadivel, V S Nici Marx, G Priyanga
{"title":"车载Ad-Hoc网络多云环境下资源分配模型的改进新颖方法。","authors":"R Augustian Isaac, P Sundaravadivel, V S Nici Marx, G Priyanga","doi":"10.1038/s41598-025-93365-y","DOIUrl":null,"url":null,"abstract":"<p><p>As the number of service requests for applications continues increasing due to various conditions, the limitations on the number of resources provide a barrier in providing the applications with the appropriate Quality of Service (QoS) assurances. As a result, an efficient scheduling mechanism is required to determine the order of handling application requests, as well as the appropriate use of a broadcast media and data transfer. In this paper an innovative approach, incorporating the Crossover and Mutation (CM)-centered Marine Predator Algorithm (MPA) is introduced for an effective resource allocation. This strategic resource allocation optimally schedules resources within the Vehicular Edge computing (VEC) network, ensuring the most efficient utilization. The proposed method begins by the meticulous feature extraction from the Vehicular network model, with attributes such as mobility patterns, transmission medium, bandwidth, storage capacity, and packet delivery ratio. For further analysis the Elephant Herding Lion Optimizer (EHLO) algorithm is employed to pinpoint the most critical attributes. Subsequently the Modified Fuzzy C-Means (MFCM) algorithm is used for efficient vehicle clustering centred on selected attributes. These clustered vehicle characteristics are then transferred and stored within the cloud server infrastructure. The performance of the proposed methodology is evaluated using MATLAB software using simulation method. This study offers a comprehensive solution to the resource allocation challenge in Vehicular Cloud Networks, addresses the burgeoning demands of modern applications while ensuring QoS assurances and signifies a significant advancement in the field of VEC.</p>","PeriodicalId":21811,"journal":{"name":"Scientific Reports","volume":"15 1","pages":"9472"},"PeriodicalIF":3.9000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923080/pdf/","citationCount":"0","resultStr":"{\"title\":\"Enhanced novelty approaches for resource allocation model for multi-cloud environment in vehicular Ad-Hoc networks.\",\"authors\":\"R Augustian Isaac, P Sundaravadivel, V S Nici Marx, G Priyanga\",\"doi\":\"10.1038/s41598-025-93365-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>As the number of service requests for applications continues increasing due to various conditions, the limitations on the number of resources provide a barrier in providing the applications with the appropriate Quality of Service (QoS) assurances. As a result, an efficient scheduling mechanism is required to determine the order of handling application requests, as well as the appropriate use of a broadcast media and data transfer. In this paper an innovative approach, incorporating the Crossover and Mutation (CM)-centered Marine Predator Algorithm (MPA) is introduced for an effective resource allocation. This strategic resource allocation optimally schedules resources within the Vehicular Edge computing (VEC) network, ensuring the most efficient utilization. The proposed method begins by the meticulous feature extraction from the Vehicular network model, with attributes such as mobility patterns, transmission medium, bandwidth, storage capacity, and packet delivery ratio. For further analysis the Elephant Herding Lion Optimizer (EHLO) algorithm is employed to pinpoint the most critical attributes. Subsequently the Modified Fuzzy C-Means (MFCM) algorithm is used for efficient vehicle clustering centred on selected attributes. These clustered vehicle characteristics are then transferred and stored within the cloud server infrastructure. The performance of the proposed methodology is evaluated using MATLAB software using simulation method. This study offers a comprehensive solution to the resource allocation challenge in Vehicular Cloud Networks, addresses the burgeoning demands of modern applications while ensuring QoS assurances and signifies a significant advancement in the field of VEC.</p>\",\"PeriodicalId\":21811,\"journal\":{\"name\":\"Scientific Reports\",\"volume\":\"15 1\",\"pages\":\"9472\"},\"PeriodicalIF\":3.9000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923080/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Scientific Reports\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41598-025-93365-y\",\"RegionNum\":2,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientific Reports","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41598-025-93365-y","RegionNum":2,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
Enhanced novelty approaches for resource allocation model for multi-cloud environment in vehicular Ad-Hoc networks.
As the number of service requests for applications continues increasing due to various conditions, the limitations on the number of resources provide a barrier in providing the applications with the appropriate Quality of Service (QoS) assurances. As a result, an efficient scheduling mechanism is required to determine the order of handling application requests, as well as the appropriate use of a broadcast media and data transfer. In this paper an innovative approach, incorporating the Crossover and Mutation (CM)-centered Marine Predator Algorithm (MPA) is introduced for an effective resource allocation. This strategic resource allocation optimally schedules resources within the Vehicular Edge computing (VEC) network, ensuring the most efficient utilization. The proposed method begins by the meticulous feature extraction from the Vehicular network model, with attributes such as mobility patterns, transmission medium, bandwidth, storage capacity, and packet delivery ratio. For further analysis the Elephant Herding Lion Optimizer (EHLO) algorithm is employed to pinpoint the most critical attributes. Subsequently the Modified Fuzzy C-Means (MFCM) algorithm is used for efficient vehicle clustering centred on selected attributes. These clustered vehicle characteristics are then transferred and stored within the cloud server infrastructure. The performance of the proposed methodology is evaluated using MATLAB software using simulation method. This study offers a comprehensive solution to the resource allocation challenge in Vehicular Cloud Networks, addresses the burgeoning demands of modern applications while ensuring QoS assurances and signifies a significant advancement in the field of VEC.
期刊介绍:
We publish original research from all areas of the natural sciences, psychology, medicine and engineering. You can learn more about what we publish by browsing our specific scientific subject areas below or explore Scientific Reports by browsing all articles and collections.
Scientific Reports has a 2-year impact factor: 4.380 (2021), and is the 6th most-cited journal in the world, with more than 540,000 citations in 2020 (Clarivate Analytics, 2021).
•Engineering
Engineering covers all aspects of engineering, technology, and applied science. It plays a crucial role in the development of technologies to address some of the world''s biggest challenges, helping to save lives and improve the way we live.
•Physical sciences
Physical sciences are those academic disciplines that aim to uncover the underlying laws of nature — often written in the language of mathematics. It is a collective term for areas of study including astronomy, chemistry, materials science and physics.
•Earth and environmental sciences
Earth and environmental sciences cover all aspects of Earth and planetary science and broadly encompass solid Earth processes, surface and atmospheric dynamics, Earth system history, climate and climate change, marine and freshwater systems, and ecology. It also considers the interactions between humans and these systems.
•Biological sciences
Biological sciences encompass all the divisions of natural sciences examining various aspects of vital processes. The concept includes anatomy, physiology, cell biology, biochemistry and biophysics, and covers all organisms from microorganisms, animals to plants.
•Health sciences
The health sciences study health, disease and healthcare. This field of study aims to develop knowledge, interventions and technology for use in healthcare to improve the treatment of patients.