利用晶体硅光电极偶联糠醛氧化无偏置制氢。

IF 15.7 1区 综合性期刊 Q1 MULTIDISCIPLINARY SCIENCES
Myohwa Ko, Myounghyun Lee, Taehyeon Kim, Wonjoo Jin, Wonsik Jang, Seon Woo Hwang, Haneul Kim, Ja Hun Kwak, Seungho Cho, Kwanyong Seo, Ji-Wook Jang
{"title":"利用晶体硅光电极偶联糠醛氧化无偏置制氢。","authors":"Myohwa Ko, Myounghyun Lee, Taehyeon Kim, Wonjoo Jin, Wonsik Jang, Seon Woo Hwang, Haneul Kim, Ja Hun Kwak, Seungho Cho, Kwanyong Seo, Ji-Wook Jang","doi":"10.1038/s41467-025-58000-4","DOIUrl":null,"url":null,"abstract":"<p><p>To commercialize the technology of photoelectrochemical hydrogen production, it is essential to surpass the US. Department of Energy target of 0.36 mmol h<sup>-1</sup> cm<sup>-2</sup> for 1-sun hydrogen production rate. In this study, we utilize crystalline silicon, which can exhibit the highest photocurrent density (43.37 mA cm<sup>-2</sup>), as the photoelectrode material. However, achieving bias-free water splitting (>1.6 V) remains challenging due to the intrinsic low photovoltage of crystalline silicon (0.6 V). To address this limitation, we replace water oxidation with low-potential furfural oxidation, enabling not only bias-free hydrogen production but also dual hydrogen production at both the cathodic and anodic sides. This approach results in a record 1-sun hydrogen production rate of 1.40 mmol h<sup>-1</sup> cm<sup>-2</sup>, exceeding the Department of Energy target by more than fourfold.</p>","PeriodicalId":19066,"journal":{"name":"Nature Communications","volume":"16 1","pages":"2701"},"PeriodicalIF":15.7000,"publicationDate":"2025-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923221/pdf/","citationCount":"0","resultStr":"{\"title\":\"Coupling furfural oxidation for bias-free hydrogen production using crystalline silicon photoelectrodes.\",\"authors\":\"Myohwa Ko, Myounghyun Lee, Taehyeon Kim, Wonjoo Jin, Wonsik Jang, Seon Woo Hwang, Haneul Kim, Ja Hun Kwak, Seungho Cho, Kwanyong Seo, Ji-Wook Jang\",\"doi\":\"10.1038/s41467-025-58000-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>To commercialize the technology of photoelectrochemical hydrogen production, it is essential to surpass the US. Department of Energy target of 0.36 mmol h<sup>-1</sup> cm<sup>-2</sup> for 1-sun hydrogen production rate. In this study, we utilize crystalline silicon, which can exhibit the highest photocurrent density (43.37 mA cm<sup>-2</sup>), as the photoelectrode material. However, achieving bias-free water splitting (>1.6 V) remains challenging due to the intrinsic low photovoltage of crystalline silicon (0.6 V). To address this limitation, we replace water oxidation with low-potential furfural oxidation, enabling not only bias-free hydrogen production but also dual hydrogen production at both the cathodic and anodic sides. This approach results in a record 1-sun hydrogen production rate of 1.40 mmol h<sup>-1</sup> cm<sup>-2</sup>, exceeding the Department of Energy target by more than fourfold.</p>\",\"PeriodicalId\":19066,\"journal\":{\"name\":\"Nature Communications\",\"volume\":\"16 1\",\"pages\":\"2701\"},\"PeriodicalIF\":15.7000,\"publicationDate\":\"2025-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11923221/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nature Communications\",\"FirstCategoryId\":\"103\",\"ListUrlMain\":\"https://doi.org/10.1038/s41467-025-58000-4\",\"RegionNum\":1,\"RegionCategory\":\"综合性期刊\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MULTIDISCIPLINARY SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nature Communications","FirstCategoryId":"103","ListUrlMain":"https://doi.org/10.1038/s41467-025-58000-4","RegionNum":1,"RegionCategory":"综合性期刊","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

要实现光电化学制氢技术的商业化,必须超越美国。能源部的目标是0.36 mmol h-1 cm-2为1太阳产氢率。在本研究中,我们利用具有最高光电流密度(43.37 mA cm-2)的晶体硅作为光电极材料。然而,由于晶体硅固有的低光电压(0.6 V),实现无偏水分解(>1.6 V)仍然具有挑战性。为了解决这一限制,我们用低电位的糠醛氧化代替水氧化,不仅可以实现无偏氢生产,而且可以在阴极和阳极两侧实现双氢生产。这种方法的结果是创纪录的1太阳产氢率为1.40 mmol h-1 cm-2,超过了能源部目标的四倍多。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

Coupling furfural oxidation for bias-free hydrogen production using crystalline silicon photoelectrodes.

Coupling furfural oxidation for bias-free hydrogen production using crystalline silicon photoelectrodes.

Coupling furfural oxidation for bias-free hydrogen production using crystalline silicon photoelectrodes.

Coupling furfural oxidation for bias-free hydrogen production using crystalline silicon photoelectrodes.

To commercialize the technology of photoelectrochemical hydrogen production, it is essential to surpass the US. Department of Energy target of 0.36 mmol h-1 cm-2 for 1-sun hydrogen production rate. In this study, we utilize crystalline silicon, which can exhibit the highest photocurrent density (43.37 mA cm-2), as the photoelectrode material. However, achieving bias-free water splitting (>1.6 V) remains challenging due to the intrinsic low photovoltage of crystalline silicon (0.6 V). To address this limitation, we replace water oxidation with low-potential furfural oxidation, enabling not only bias-free hydrogen production but also dual hydrogen production at both the cathodic and anodic sides. This approach results in a record 1-sun hydrogen production rate of 1.40 mmol h-1 cm-2, exceeding the Department of Energy target by more than fourfold.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Nature Communications
Nature Communications Biological Science Disciplines-
CiteScore
24.90
自引率
2.40%
发文量
6928
审稿时长
3.7 months
期刊介绍: Nature Communications, an open-access journal, publishes high-quality research spanning all areas of the natural sciences. Papers featured in the journal showcase significant advances relevant to specialists in each respective field. With a 2-year impact factor of 16.6 (2022) and a median time of 8 days from submission to the first editorial decision, Nature Communications is committed to rapid dissemination of research findings. As a multidisciplinary journal, it welcomes contributions from biological, health, physical, chemical, Earth, social, mathematical, applied, and engineering sciences, aiming to highlight important breakthroughs within each domain.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信