Juan Carlos López-Olivos, Andrés Álvarez-García, Georgina Garza Ramos, Lázaro Huerta, Paola Molina, Alejandro Heredia-Barbero, Ignacio L Garzón, Penélope Rodríguez-Zamora
{"title":"l-谷胱甘肽和d-谷胱甘肽手性转移到金、银和铜纳米粒子中的金属配体界面效应。","authors":"Juan Carlos López-Olivos, Andrés Álvarez-García, Georgina Garza Ramos, Lázaro Huerta, Paola Molina, Alejandro Heredia-Barbero, Ignacio L Garzón, Penélope Rodríguez-Zamora","doi":"10.1039/d5na00208g","DOIUrl":null,"url":null,"abstract":"<p><p>Glutathione (GSH) plays a pivotal role in numerous physiological and metabolic processes, including the defense of cells against free radicals and metal toxicity. This tripeptide has been combined with several metal nanoparticles to form a metal-organic interface with unique properties. Here, we implement a one-step, high-yield synthesis method to produce ultrasmall gold, silver, and copper nanoparticles in the intermediate size regime between size-selected nanoclusters and plasmonic nanoparticles to be functionalized with l- and d-glutathione, and study the chirality transfer evidenced by the emergent optical activity observed for each case. The distinctive interactions that take place at the metal-ligand interface for each metal are primarily accountable for establishing the properties of this system. In its protonated state, glutathione anchors only by its thiol group to the surface of gold and copper nanoparticles, whilst for silver nanoparticles an additional binding site through the nitrogen atom of the amide group was indicated by XPS data, albeit with a relatively low proportion. This may contribute to the higher anisotropy factor observed in silver-glutathione nanoparticles. Such slight variations in adsorption configuration generate different chiroptical activity, which has been analyzed per energy region using time-dependent DFT calculations, revealing that metal-to-ligand transitions dominate most of the spectra while ligand-to-ligand are also present in the higher energy regime. Moreover, FTIR and CD data together suggest that those dissimilarities also propitiate particular peptide self-assemblies through intermolecular GSH interactions for each metal, which result in supramolecular structures with properties of beta-sheet arrays. This study offers a parallel examination of the chirality of glutathione-functionalized coinage metals, allowing to establish decisive differences that can be tailored to benefit developments in chiral biomedicine and other diverse applications.</p>","PeriodicalId":18806,"journal":{"name":"Nanoscale Advances","volume":" ","pages":""},"PeriodicalIF":4.6000,"publicationDate":"2025-03-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915459/pdf/","citationCount":"0","resultStr":"{\"title\":\"Metal-ligand interface effect in the chirality transfer from l- and d-glutathione to gold, silver and copper nanoparticles.\",\"authors\":\"Juan Carlos López-Olivos, Andrés Álvarez-García, Georgina Garza Ramos, Lázaro Huerta, Paola Molina, Alejandro Heredia-Barbero, Ignacio L Garzón, Penélope Rodríguez-Zamora\",\"doi\":\"10.1039/d5na00208g\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>Glutathione (GSH) plays a pivotal role in numerous physiological and metabolic processes, including the defense of cells against free radicals and metal toxicity. This tripeptide has been combined with several metal nanoparticles to form a metal-organic interface with unique properties. Here, we implement a one-step, high-yield synthesis method to produce ultrasmall gold, silver, and copper nanoparticles in the intermediate size regime between size-selected nanoclusters and plasmonic nanoparticles to be functionalized with l- and d-glutathione, and study the chirality transfer evidenced by the emergent optical activity observed for each case. The distinctive interactions that take place at the metal-ligand interface for each metal are primarily accountable for establishing the properties of this system. In its protonated state, glutathione anchors only by its thiol group to the surface of gold and copper nanoparticles, whilst for silver nanoparticles an additional binding site through the nitrogen atom of the amide group was indicated by XPS data, albeit with a relatively low proportion. This may contribute to the higher anisotropy factor observed in silver-glutathione nanoparticles. Such slight variations in adsorption configuration generate different chiroptical activity, which has been analyzed per energy region using time-dependent DFT calculations, revealing that metal-to-ligand transitions dominate most of the spectra while ligand-to-ligand are also present in the higher energy regime. Moreover, FTIR and CD data together suggest that those dissimilarities also propitiate particular peptide self-assemblies through intermolecular GSH interactions for each metal, which result in supramolecular structures with properties of beta-sheet arrays. This study offers a parallel examination of the chirality of glutathione-functionalized coinage metals, allowing to establish decisive differences that can be tailored to benefit developments in chiral biomedicine and other diverse applications.</p>\",\"PeriodicalId\":18806,\"journal\":{\"name\":\"Nanoscale Advances\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":4.6000,\"publicationDate\":\"2025-03-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11915459/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nanoscale Advances\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1039/d5na00208g\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nanoscale Advances","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1039/d5na00208g","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
Metal-ligand interface effect in the chirality transfer from l- and d-glutathione to gold, silver and copper nanoparticles.
Glutathione (GSH) plays a pivotal role in numerous physiological and metabolic processes, including the defense of cells against free radicals and metal toxicity. This tripeptide has been combined with several metal nanoparticles to form a metal-organic interface with unique properties. Here, we implement a one-step, high-yield synthesis method to produce ultrasmall gold, silver, and copper nanoparticles in the intermediate size regime between size-selected nanoclusters and plasmonic nanoparticles to be functionalized with l- and d-glutathione, and study the chirality transfer evidenced by the emergent optical activity observed for each case. The distinctive interactions that take place at the metal-ligand interface for each metal are primarily accountable for establishing the properties of this system. In its protonated state, glutathione anchors only by its thiol group to the surface of gold and copper nanoparticles, whilst for silver nanoparticles an additional binding site through the nitrogen atom of the amide group was indicated by XPS data, albeit with a relatively low proportion. This may contribute to the higher anisotropy factor observed in silver-glutathione nanoparticles. Such slight variations in adsorption configuration generate different chiroptical activity, which has been analyzed per energy region using time-dependent DFT calculations, revealing that metal-to-ligand transitions dominate most of the spectra while ligand-to-ligand are also present in the higher energy regime. Moreover, FTIR and CD data together suggest that those dissimilarities also propitiate particular peptide self-assemblies through intermolecular GSH interactions for each metal, which result in supramolecular structures with properties of beta-sheet arrays. This study offers a parallel examination of the chirality of glutathione-functionalized coinage metals, allowing to establish decisive differences that can be tailored to benefit developments in chiral biomedicine and other diverse applications.